Radiol Cardiothorac Imaging
June 2024
Purpose To develop a deep learning model for increasing cardiac cine frame rate while maintaining spatial resolution and scan time. Materials and Methods A transformer-based model was trained and tested on a retrospective sample of cine images from 5840 patients (mean age, 55 years ± 19 [SD]; 3527 male patients) referred for clinical cardiac MRI from 2003 to 2021 at nine centers; images were acquired using 1.5- and 3-T scanners from three vendors.
View Article and Find Full Text PDFBackground Cardiac cine can benefit from deep learning-based image reconstruction to reduce scan time and/or increase spatial and temporal resolution. Purpose To develop and evaluate a deep learning model that can be combined with parallel imaging or compressed sensing (CS). Materials and Methods The deep learning model was built on the enhanced super-resolution generative adversarial inline neural network, trained with use of retrospectively identified cine images and evaluated in participants prospectively enrolled from September 2021 to September 2022.
View Article and Find Full Text PDFBackground: Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR.
View Article and Find Full Text PDFPurpose: To improve the accuracy and robustness of T estimation by MyoMapNet, a deep learning-based approach using 4 inversion-recovery T -weighted images for cardiac T mapping.
Methods: MyoMapNet is a fully connected neural network for T estimation of an accelerated cardiac T mapping sequence, which collects 4 T -weighted images by a single Look-Locker inversion-recovery experiment (LL4). MyoMapNet was originally trained using in vivo data from the modified Look-Locker inversion recovery sequence, which resulted in significant bias and sensitivity to various confounders.
The objective of the current study was to investigate the performance of various deep learning (DL) architectures for MyoMapNet, a DL model for T estimation using accelerated cardiac T mapping from four T -weighted images collected after a single inversion pulse (Look-Locker 4 [LL4]). We implemented and tested three DL architectures for MyoMapNet: (a) a fully connected neural network (FC), (b) convolutional neural networks (VGG19, ResNet50), and (c) encoder-decoder networks with skip connections (ResUNet, U-Net). Modified Look-Locker inversion recovery (MOLLI) images from 749 patients at 3 T were used for training, validation, and testing.
View Article and Find Full Text PDFObjectives: The authors implemented an explainable machine learning (ML) model to gain insight into the association between cardiac magnetic resonance markers and adverse outcomes of cardiovascular hospitalization and all-cause death (composite endpoint) in patients with nonischemic dilated cardiomyopathy (NICM).
Background: Risk stratification of patients with NICM remains challenging. An explainable ML model has the potential to provide insight into the contributions of different risk markers in the prediction model.