Publications by authors named "Salah Adlat"

CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression.

View Article and Find Full Text PDF

Obesity is caused by imbalanced energy intake and expenditure. Excessive energy intake and storage in adipose tissues are associated with many diseases. Several studies have demonstrated that vascular growth endothelial factor B (VEGFB) deficiency induces obese phenotypes.

View Article and Find Full Text PDF

One of the most recent forms of programmed cell death, ferroptosis, is crucial in tumorigenesis. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. However, it is unknown whether ferroptosis-related genes (FRGs) are associated with colon adenocarcinoma (COAD) metastasis, immune cell infiltration, and oxidative stress in COAD.

View Article and Find Full Text PDF

Background: Cancer diagnoses and deaths among the elderly (65 +) are expected to increase significantly over the next decade. Immune checkpoint inhibitors specifically target ICI genes and enhance immune system function. However, poor outcomes may be associated with aging.

View Article and Find Full Text PDF

Cancer is caused by abnormal cell growth and metastasis to other tissues. Development of cancers is complex and underlining mechanisms are mostly unknown. Disco-interacting protein 2 homolog B (DIP2B) is a member of Dip2.

View Article and Find Full Text PDF
Article Synopsis
  • - The brain is particularly vulnerable to hypoxia, leading to damage in brain tissue, especially after blood supply is restored, known as ischemia-reperfusion injury.
  • - Hydrogen sulfide (HS) serves as a signaling molecule that can have varying effects on neurons based on its concentration, with low levels being protective against ischemia-reperfusion injury.
  • - This review discusses recent findings on how HS can positively influence brain tissue during injuries caused by restored blood flow, offering potential strategies for clinical diagnosis and treatment.
View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revolutionized metastatic melanoma treatment, but our knowledge of ICI activity across age groups is insufficient. Patients in different age groups with advanced melanoma were selected based on the ICI approval time in this study. Patients with melanoma were identified in the Surveillance, Epidemiology, and End Result (SEER) database program 2004-2016.

View Article and Find Full Text PDF

is well known for its role in the nervous system, and is associated with neurological disorders, but its role in the lung's physiology is still not reported. To elucidate the functional role of in the lung, we generated a knock-out (KO) mouse model using the CRISPR-Cas9 technology and performed transcriptomic analysis. A total of 652 genes were identified as differentially expressed between and mice, out of which 500 were downregulated, while 152 were upregulated genes.

View Article and Find Full Text PDF

In this research, atractylenolide II (ATR II) on apoptosis, cell cycle cells via ER pathway in breast cancer (MDA-MB-231 and MCF-7) cells are assessed. The effect of ATR II on cell proliferation was detected by MTT assay. Additional flow cytometry, luciferase, the western blot were performed to detect the signaling pathway cytotoxicity of ATR II.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) are a significant cause of human health harm. In the past, stem cell therapy was reported to have functional defects, such as immune rejection, tumorigenicity, and infusion toxicity. Exosomes are extracellular vesicles with lipid bilayer membrane structure, containing proteins, lipids, mRNA, miRNA, DNA, and other molecules, which can mediate various biological functions such as immune response, inflammatory response, cell migration, and differentiation intercellular communication.

View Article and Find Full Text PDF

Disconnected (disco)-interacting protein 2 homolog B (Dip2B) is a member of the Dip2 superfamily and plays an essential role in axonal outgrowth during embryogenesis. In adults, Dip2B is highly expressed in different brain regions, as shown by in situ analysis, and may have a role in axon guidance. However, the expression and biological role of Dip2B in other somatic tissues remain unknown.

View Article and Find Full Text PDF

Myxosarcomas are rare malignant tumors of soft connective tissues, classified into various subtypes, including myxoid liposarcoma, myxoid chondrosarcoma, and myxoid leiomyosarcoma. In this study, we proposed to study the demographic, tumor characteristics, and overall survival rate and compared the treatment modalities between these cancers. Patient data collected based on locoregional metastasis presentation of the abovementioned tumors with a cutoff study of survival duration up to 10 years were obtained from the SEER database during 1975-2016.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is important for lung development and function but ideal mouse models are limited to decipher the quantitative relationship between VEGF expression levels and its proper development and pathogenesis. Human SPC promoter has been used to faithfully express genes or cDNAs in the pulmonary epithelium in many transgenic mouse models. In the study, a mouse model of lung-specific and reversible VEGF repression (hspc-rtTR/Vegf) was generated.

View Article and Find Full Text PDF

Molecular and anatomical functions of mammalian Dip2 family members (Dip2A, Dip2B and Dip2C) during organogenesis are largely unknown. Here, we explored the indispensable role of Dip2B in mouse lung development. Using a LacZ reporter, we explored Dip2B expression during embryogenesis.

View Article and Find Full Text PDF

Background And Objectives: The immunomodulatory potential of mesenchymal stem cells (MSCs) can be regulated by a variety of molecules, especially cytokines. The inflammatory cytokine, TNF-like ligand 1A (TL1A), has been reported as an inflammation stimulator in-multiple autoimmune diseases. Here, we studied the effects of TL1A/TNF-receptor 2 (TNFR2) pathway on the therapeutic potency of bone marrow-derived MSCs (BMSCs).

View Article and Find Full Text PDF

Disco-interacting protein 2 homolog B (Dip2B) is a member of Dip2 family encoded by gene. Dip2B has been reported to regulate murine epithelial KIT progenitor cell expansion and differentiation epigenetically via exosomal miRNA targeting during salivary gland organogenesis. However, its molecular functions, cellular activities and biological process remain unstudied.

View Article and Find Full Text PDF

Dip2C is highly expressed in brain and many other tissues but its biological functions are still not clear. Genes regulated by Dip2C in brain have never been studied. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, adaptive immune systems of bacteria and archaea, have been recently developed and broadly used in genome editing.

View Article and Find Full Text PDF

Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a significant cause of death worldwide. Because of its major individual differences in genetic background, pathogenesis, and disease progression pattern, the mortality risk rate remains high following conventional Western medicine diagnosis under current guidelines. Traditional Chinese medicine (TCM) has important multi-target, multi-pathway, and multi-layer benefits that can effectively address western medicine deficiencies.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is the major autoimmune destructive disease of joints with a complicated pathogenesis. The contribution of tumor necrosis factor-like ligand 1A (TL1A) in RA pathogenesis, especially on fibroblast-like synoviocytes (FLS), has been suggested clinically. The present study investigated the role of TL1A in mitochondrial dysfunction, induced oxidative stress in mitochondria, apoptosis resistance and the inflammatory response in FLS obtained from RA patients (RA-FLS).

View Article and Find Full Text PDF

Excessive fat accumulation causes obesity and many diseases. Previous study demonstrates VEGFB universal knockout induces obese phenotypes including expansion of white adipose tissue, whitening of brown adipose tissue, increase of fat accumulation and reduction in energy consumption. However, roles of VEGFB in adipose tissues are not clear.

View Article and Find Full Text PDF

Disconnected interacting protein 2 homolog A (DIP2A) is highly expressed in nervous system and respiratory system of developing embryos. However, genes regulated by Dip2a in developing brain and lung have not been systematically studied. Transcriptome of brain and lung in embryonic 19.

View Article and Find Full Text PDF

Prostate cancer is the most common illness affecting men worldwide. Although much progress has been made in the study of prostate cancer prevention and treatment, less attention has been paid to the molecular mechanism of the disease. The molecular arrangement by which atractylenolide II (ATR II) induces human prostate cancer cytotoxicity was comprehensively examined in the present study.

View Article and Find Full Text PDF

Obesity is the result of excessive energy accumulation and is associated with many diseases. We previously reported that universal repression of vascular endothelial growth factor (VEGF) leads to brown-like adipocyte development in white adipose tissues, and that these mice are resistant to obesity (Lu X et al. Endocrinology 153: 3123-3132, 2012).

View Article and Find Full Text PDF