Publications by authors named "Salah A Abdel Aziz"

A series of 1,2,4-triazolo[1,5-]pyrimidine-based derivatives were developed and prepared by reacting chalcones - with 3-phenyl-1,2,4-triazole-5-amine (). The novel compounds were analyzed using several spectroscopic techniques, and their antimicrobial efficacies against six pathogens (Gram-negative, Gram-positive, and fungi) were tested. Most of the tested compounds exhibited significant antimicrobial activity compared to ciprofloxacin and fluconazole.

View Article and Find Full Text PDF
Article Synopsis
  • COX-2-selective drugs were pulled from the market due to heart-related side effects, leading researchers to seek new COX-2 inhibitors that also protect cardiovascular health.
  • Newly created 15 diaryl-1,2,4-triazolo[3,4-]pyrimidine hybrids showed promising results as dual COX-2 and sEH inhibitors, with some compounds demonstrating greater potency and selectivity compared to celecoxib.
  • The most effective compounds also showed strong anti-inflammatory and analgesic properties while having a positive impact on heart health, and their molecular binding was analyzed to confirm their selectivity for COX-2.
View Article and Find Full Text PDF

The aim of this study is to evaluate the anti-HPV potential of a Lam seed, L. seed, and peel herbal mixture in the form of polymer film-forming systems. A clinical trial conducted in outpatient clinics showed that the most significant outcome was wart size and quantity.

View Article and Find Full Text PDF

Over the past decades, cancer has been a challenging domain for medicinal chemists as it is an international health concern. In association, small molecules such as 2-aminothiophenes and their derivatives showed significant antitumor activity through variable modes of action. Therefore, this article aims to review the advances regarding these core scaffolds over the past 10 years, where 2-aminothiophenes and their fused analogs are classified and discussed according to their biological activity and mode of action, in the interest of boosting new design pathways for medicinal chemists to develop targeted antitumor candidates.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating dual inhibitors targeting both EGFR and JNK-2, crucial for combating multifactorial diseases like cancer.
  • Five tested compounds, particularly 5b, 5d, and 6h, exhibited strong inhibitory effects on various cancer cell lines, with IC values indicating effective potency.
  • Docking studies confirmed the compounds' binding ability to critical regions of proteins, suggesting potential for inducing apoptosis and halting the cell cycle in cancer cells.
View Article and Find Full Text PDF

New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds and ) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds -, -, -, and -. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c.

View Article and Find Full Text PDF

Some cyclooxygenase (COX)-2 selective medications were withdrawn from the market just a few years after their production due to cardiovascular side effects. In this study, a new series of pyrimidine/thiazole hybrids 7a-p was synthesized as selective COX-2/soluble epoxide hydrolase (sEH) inhibitors with analgesic and anti-inflammatory effects, and lower cardiotoxicity effects. The target compounds were synthesized and in vitro tested against COX-1, COX-2, and sEH enzymes.

View Article and Find Full Text PDF

Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy.

View Article and Find Full Text PDF

DNA gyrase and topoisomerase IV (topo IV) inhibitors are among the most interesting antibacterial drug classes without antibacterial pipeline representative. Twenty-four new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids were developed and tested against DNA gyrase and topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compounds 4c, 4e, 4f, and 5e displayed an IC of 34, 26, 32, and 90 nM against E.

View Article and Find Full Text PDF

A new series of pyrimidine-5-carbonitrile derivatives 8a-p carrying the 1,3-thiazole moiety has been designed and synthesized as novel anti-inflammatory EGFR inhibitors with cardiac and gastric safety profiles. 8a-p have been assessed for their inhibitory activity against COX-1/COX-2 activity. Compounds 8h, 8n, and 8p were found to be potent and selective COX-2 inhibitors (IC = 1.

View Article and Find Full Text PDF

The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors.

View Article and Find Full Text PDF

Background: Quinolones are well known antibacterial chemotherapeutics. Furthermore, they were reported for other activities such as anticancer and urease inhibitory potential. Modification at C7 of quinolones can direct these compounds preferentially toward target molecules.

View Article and Find Full Text PDF

Two new series of 1,3,4-oxadiazole and coumarin derivatives based on pyrimidine-5-carbonitrile scaffold have been synthesized and evaluated for their COX-1/COX-2 inhibitory activity. Compounds 10c, 10e, 10h-j, 14e-f, 14i and 16 were found to be the most potent and selective inhibitors of COX-2 (IC 0.041-0.

View Article and Find Full Text PDF

A series of new 1,6-dihydropyrimidin-2-thiol derivatives (scaffold A) as VEGFR-2 inhibitors has been designed and synthesized. Compounds 3a, 3b, 3e and 4b have been selected for in vitro anticancer screening by the National Cancer Institute. Compound 3e showed remarkable anticancer activity against most of the cell lines tested, where a complete cell death against leukemia, non-small cell lung cancer, colon, CNS, melanoma, and breast cancer cell lines was observed.

View Article and Find Full Text PDF

New 1,3,4-thiadiazine-thiourea derivatives have been synthesized. All the synthesized compounds were examined for in vitro cytotoxic activity against Non-Small Cell Lung Cancer (NSCLC) cell line A549, using MTT bioassay. Compounds 5d, 5i, 5j showed the highest cytotoxic activity with IC values of 0.

View Article and Find Full Text PDF

Different studies about the anticancer potential of several medically used antibacterial fluoroquinolones have been established. Fluoroquinolone derivatives, like some anti-cancer drugs, such as doxorubicin, can achieve antitumor activity via poisoning of type II human DNA topoisomerases. Interestingly, structural features required for the anticancer activity of quinolones have been determined.

View Article and Find Full Text PDF

A series of dihydropyrimidine (DHPM) derivatives bearing 1,3,4-oxadiazole moiety was designed and synthesized as monastrol analogues. The new compounds were screened for their cytotoxic activity toward 60 cancer cell lines according to NCI (USA) protocol. Seven compounds were further examined against the most sensitive cell lines, leukemia HL-60(TB) and MOLT-4.

View Article and Find Full Text PDF

A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives 13a-p were synthesized via aldol condensation of 3/4-nitroacetophenones with appropriately substituted aldehydes followed by cyclization of the formed chalcones with 4-methanesulfonylphenylhydrazine hydrochloride. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All compounds were more potent inhibitors for COX-2 than COX-1.

View Article and Find Full Text PDF

In continuation to our previous work, thiazolopyrimidines 2a-x were synthesized through intramolecular cyclization of 2-phenacylthio-dihydropyrimidine hydrobromides 1a-x using polyphosphoric acid. On the other hand, thiazolo[3,2-a]pyrimidine-3-one 3 was coupled with aryldiazonium salts or condensed with isatin to afford compounds 4a-c or 5, respectively. Chemical structure of the target compounds was substantiated by IR, FT-IR, (1)H-, (13)C and DEPT-(13)C NMR, MS as well as microanalyses.

View Article and Find Full Text PDF