Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms "microemulsion" and "curvature" in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape.
View Article and Find Full Text PDFSoap applications for cleaning and personal care have been used for more than 4000 years, dating back to the pharaonic period, and have widely proliferated with the appearance of synthetic surfactants a century ago. Synthetic surfactants used to make macro-micro-nano-emulsions and foams are used in laundry and detergency, cosmetics and pharmaceuticals, food conditioning, emulsified paints, explosives, enhanced oil recovery, wastewater treatment, etc. The introduction of a multivariable approach such as the normalized hydrophilic-lipophilic deviation (HLD ) and of specific structures, tailored with an intramolecular extension to increase solubilization (the so-called extended surfactants), makes it possible to improve the results and performance in surfactant-oil-water systems and their applications.
View Article and Find Full Text PDFThe standard HLD (Hydrophilic-Lipophilic-Deviation) equation expressing quantitatively the deviation from the "optimum formulation" of Surfactant/Oil/Water systems is normalized and simplified into a relation including only the three more meaningful formulation variables, namely (i) the "Preferred Alkane Carbon Number" PACN which expresses the amphiphilicity of the surfactant, (ii) the "Equivalent Alkane Carbon Number" EACN which accurately reflects the hydrophobicity of the oil and (iii) the temperature which has a strong influence on ethoxylated surfactants and is thus selected as an effective, continuous and reversible scanning variable. The PACN and EACN values, as well as the "temperature-sensitivity-coefficient"τ of surfactants are determined by reviewing available data in the literature for 17 nonionic n-alkyl polyglycol ether (CE) surfactants and 125 well-defined oils. The key information used is the so-called "fish-tail-temperature" T* which is a unique data point in true ternary CE/Oil/Water fish diagrams.
View Article and Find Full Text PDFWe have studied emulsions made with two- and three-phase oil-water-surfactant systems in which one of the phases is a microemulsion, the other phases being water or/and oil excess phases. Such systems have been extensively studied in the 1970-1980s for applications in enhanced oil recovery. It was found at that time that the emulsions became very unstable in the three-phase systems, but so far few explanations have been proposed.
View Article and Find Full Text PDFWhen surfactants adsorb at liquid interfaces, they not only decrease the surface tension, they confer rheological properties to the interfaces. There are two types of rheological parameters associated to interfacial layers: compression and shear. The elastic response is described by a storage modulus and the dissipation by a loss modulus or equivalently a surface viscosity.
View Article and Find Full Text PDFThe Phase Inversion Temperature of a reference C10E4/n-Octane/Water system exhibits a quasi-linear variation versus the mole fraction of a second surfactant S2 added in the mixture. This variation was recently proposed as a classification tool to quantify the Hydrophilic-Lipophilic Balance (HLB) of commercial surfactants. The feasibility of the so-called PIT-slope method for a wide range of well-defined non-ionic and ionic surfactants is investigated.
View Article and Find Full Text PDFThe minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables.
View Article and Find Full Text PDFThe phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5).
View Article and Find Full Text PDFThe equilibrium phase behavior of the well-defined system tetraethyleneglycol decyl ether (C(10)E(4))/n-octane/water (SOW) at variable temperature (T) was revisited by careful analysis of the three bidimensional cuts, namely, the gamma (at constant water-oil ratio), chi (at constant surfactant concentration), and Delta (at constant temperature) plots. A straightforward methodology is reported to determine the frontiers of the triphasic (Winsor III) domain on any cut of the SOW-T phase prism. It comes from the systematic analysis of another cut, here gamma at different water-oil ratios and chi at different surfactant concentrations from the knowledge of Delta cuts at different temperatures.
View Article and Find Full Text PDFThe sequential injection (SIA) technique was applied for the on-line preparation of an "oil in water" microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.
View Article and Find Full Text PDFAn "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2007
The phase behavior of C(10)E(4)-oil-water systems at constant o/w ratio and variable temperature (fish diagram) has been investigated for several homologous oil families. The temperature T( *) and surfactant concentration C( *) at the critical point were determined for 10 n-alkanes varying from C(6) to C(28) as well as for a series of alkylcyclohexanes and alkylbenzenes. On the basis of T( *), equivalent alkane carbon numbers (EACN) were assigned to nonlinear alkanes, alkylbenzenes, and alkylcyclohexanes.
View Article and Find Full Text PDFMany phenomena take place during different types of emulsion inversions, particularly a change in interface curvature and drop size, which could be detected by backward light scattering. Monitoring the backscattering signal allows us to detect the emulsion inversion in three main cases, one transitional and two catastrophic types. The backscattering data could give some clue as to emulsion morphology, which is not available from conductivity measurements.
View Article and Find Full Text PDFBecause their affinities for the oil and water phases vary considerably with the number of ethylene oxide units in their hydrophilic group, the ethoxylated nonionic species occurring in commercial products tend to behave in a non-collective way, with the low ethoxylation oligomers partitioning mostly in the oil phase. This results in a surfactant mixture at the interface which is more hydrophilic than the one which was introduced in the system in the first place. The pseudophase model is used to study the partitioning in Winsor III type systems, and to estimate the deviation of the interfacial mixture composition from the overall one.
View Article and Find Full Text PDFCommercial ethoxylated nonionic surfactant mixtures containing alcohol cosurfactant exhibit a three-phase behavior whose formulation strongly varies with the water/oil ratio. As a consequence, a change in water/oil ratio can result in a sequence of up to three different emulsion inversion processes, through a combination of formulation and composition effects.
View Article and Find Full Text PDFWinsor type I equilibrated surfactant-oil-water (SOW) systems produce o/w emulsions upon stirring. However, if the surfactant is initially dissolved in the oil phase, the attained type after inmediate emulsification is usually w/o. If the SOW system is partially equilibrated, it could result in a normal o/w emulsion, as if it were fully equilibrated.
View Article and Find Full Text PDFTwo kinds of transitions can occur when an emulsified water-oil-ethoxylated nonionic surfactant system is cooled under constant stirring. At a water-oil ratio close to unity, a transitional inversion takes place from a water-in-oil (W/O) to an oil-in-water (O/W) morphology according to the so-called phase-inversion-temperature method. At a high water content, a multiple w/O/W emulsion changes to a simple O/W emulsion.
View Article and Find Full Text PDFEmulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions.
View Article and Find Full Text PDFVolatile compounds are often mediators of plant-pollinator interactions. Their emission is presumed to be costly, but this cost has seldom been quantified. Figs of Ficus carica (a dioecious species) release volatile compounds when receptive, thus attracting the agaonid wasp Blastophaga psenes.
View Article and Find Full Text PDFAn on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.
View Article and Find Full Text PDF