Compared to batch operation, continuous bioprocessing can offer numerous advantages, including increased productivity, improved process control, reduced footprint, and increased flexibility. However, integration of traditional batch operations into a connected process can be challenging. In contrast to batch operations run at constant pressure or high flux, virus filtration in continuous processes may be operated at very low flux.
View Article and Find Full Text PDFAs biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5-100 L/m /h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation.
View Article and Find Full Text PDFBubble point tests are widely used for assessing the integrity of sterilizing-grade membrane cartridge filters. While many authors have considered the limitations of bubble point tests as applied to cartridge filters, the level of bacterial retention assurance provided by this test as conducted with automated integrity testers (AITs) has not, until now, been quantified. Contrary to the notion that filter leaks result in a depressed bubble point, it was shown that the bubble point as reported by AITs was insensitive to defect size up until the point where the AIT either determined a gross leak failure or was not able to return a valid result.
View Article and Find Full Text PDFThe development of continuous/connected bioprocesses requires new approaches for viral clearance validation, both for specific unit operations and for the overall process. In this study, we have developed a transient inline spiking system that can be used to evaluate virus clearance at distinct time points during prolonged operation of continuous bioprocesses. The proof of concept for this system was demonstrated by evaluating the viral clearance for a virus filtration step, both with and without a prefilter upstream of the virus filter.
View Article and Find Full Text PDFVirus filtration is a robust size-based technique that can provide the high level of viral clearance required for the production of mammalian-derived biotherapeutics such as monoclonal antibodies. Several studies have shown that the retention characteristics of some, but not all, virus filters can be significantly affected by membrane fouling, but there have been no direct measurements of how protein fouling might alter the location of virus capture within these membranes. The objective of this study was to directly examine the effect of protein fouling by human immunoglobulin G (IgG) on virus capture within the Viresolve® Pro and Viresolve® NFP membranes by scanning electron microscopy using different size gold nanoparticles.
View Article and Find Full Text PDFPDA J Pharm Sci Technol
May 2018
Unlabelled: Reliability of retention performance is of paramount importance for membrane filters designed for sterile and virus filtration. To achieve dependable retention, an integrity test can be applied to ensure the absence of oversize pores or defects that can compromise the retention capability of the filter. Probably the most commonly applied nondestructive integrity test for membrane filters is the gas-liquid diffusion test, with air and water often used as the gas-liquid pair.
View Article and Find Full Text PDFMembrane discs offer a convenient format for evaluating membrane performance in normal flow filtration. However, while pleated devices of different sizes tend to scale in close proportion to their contained areas, they do not necessarily scale in direct proportion from flat discs. The objectives of this study are to quantify differences in performance among sterilizing-grade membrane devices as a function of device type and size, to develop an understanding of the factors that affect device scalability, and to develop a mathematical model to predict a cartridge-to-disc scalability factor based on membrane properties and porous support properties and dimensions.
View Article and Find Full Text PDF