Herein, we report a supersensitive and specific detection of Salmonella employing nanocatalysis of silver nanoparticle (AgNp). A nanobioprobe was developed employing specific antibody (Ab) that binds to a peptide present in transmembrane protein of Salmonella. We have studied 7 surface-exposed peptide hits from conserved virulence proteins (PagC, ST50, PagN, CdtB and FliC).
View Article and Find Full Text PDFPaper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits.
View Article and Find Full Text PDFBromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear.
View Article and Find Full Text PDFPurpose: Single-ventricle physiology encompasses a group of congenital cardiac malformations with only one functional ventricle. The Fontan procedure is the final palliation of this pathway and has its complications. One of these is Fontan-associated liver disease (FALD).
View Article and Find Full Text PDFPoint of Care Diagnostics (POCD) is quintessential in hospitals and the healthcare sector as the secants uplift the quality of medical care and the life of a patient by facilitating quick identification of the underlying pathological condition. Nanotechnology can provide opportunities and has potential in the development of new-age sensing/diagnostic tools. Owing to extraordinary features (e.
View Article and Find Full Text PDFBreast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression.
View Article and Find Full Text PDFIn recent times, nanoparticles have experienced a significant upsurge in popularity, primarily owing to their minute size and their remarkable ability to modify physical, chemical, and biological properties. This burgeoning interest can be attributed to the expanding array of biomedical applications where nanoparticles find utility. These nanoparticles, typically ranging in size from 10 to 100 nm, exhibit diverse shapes, such as spherical, discoidal, and cylindrical configurations.
View Article and Find Full Text PDFBRD4 binds to acetylated histones to regulate transcription and drive cancer cell proliferation. However, the role of BRD4 in normal cell growth remains to be elucidated. Here we investigated the question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO).
View Article and Find Full Text PDFThe development of hybrid biofunctionalized nanomaterials has emerged as an attractive substitute for development of advanced biosensing platforms with superior synergistic properties. Herein, we report a label-free ultrasensitive electrochemical aptasensor comprising nanohybrid of graphene oxide (GO) and aptamer conjugated gold nanoparticles (GNP-A) for detection of cardiac biomarker Troponin I (TnI). The GNP-A are homogenously arranged by self-assembly on GO sheet to construct nanohybrid (GO@GNP-A) onto which the biomarker protein is analysed.
View Article and Find Full Text PDFBioreceptor functionalized metallic nano-colloids have been identified as effective nanobioprobes to realize the detection of an analyte based on a common phenomenon of salt-induced aggregation. In marked contrast to this, we describe a nano-sandwich assay integrating the novel match-pair of aptamer and peptide functionalized gold nanoparticles. The site-directed biomolecular interaction of high affinity aptamer and peptide bioreceptors directed towards distinct sites of cardiac biomarker troponin I; this was found to form a nano-sandwich assay in a peculiar manner.
View Article and Find Full Text PDFThe aim of the present study was to reveal the effect of hyperlipidemia on β2- and β3-adrenergic signaling in late pregnant rat uterus. Hyperlipidemia was induced in female Wistar rats by feeding a high-fat high-cholesterol diet for 8 weeks before and after mating upto the 21st day of gestation. The effect of hyperlipidemia on β-adrenergic signaling was studied with the help of tension experiments, real-time PCR and cAMP ELISA in 21-day pregnant rat uterus.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae genome contains 6572 ORFs, of which 680 ORFs are classified as dubious ORFs. A dubious ORF is a small, noncoding, nonconserved ORF that overlaps with another ORF of the complementary strand. Our study characterizes a dubious/nondubious ORF pair, YPR099C/MRPL51, and shows the transcript and protein level expression of YPR099C.
View Article and Find Full Text PDFCrg1 is an S-adenosylmethionine (SAM)-dependent methyltransferase required for cantharidin resistance in yeast. Crg1 has a well-characterized methyltransferase domain that inactivates cantharidin by methylation. However, the remaining part of the Crg1 protein is yet to be functionally characterized.
View Article and Find Full Text PDFChromatin regulates gene expression and genome maintenance, and consists of histones and other components. The post-translational modification of histones plays a key role in maintaining the structure and function of chromatin under different pathophysiological stress conditions. Here, we investigate the functions of previously unexplored amino acid residues in histones H3 and H4.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Does the inhibition of the protein kinase casein kinase 2 (CK2) alter the uterine contractility? What is the main finding and its importance? Inhibition of CK2 impaired the spontaneous and oxytocin-induced contractility in late pregnant mouse uterus. This finding suggests that CK2 is a novel pathway mediating oxytocin-induced contractility in the uterus and thus opens up the possibility for this class of drugs to be developed as a new class of tocolytics.
Abstract: The protein kinase casein kinase 2 (CK2) is a ubiquitously expressed serine or threonine kinase known to phosphorylate a number of substrates.
KP1019 ([trans-RuCl(1H-indazole)]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019.
View Article and Find Full Text PDFAim: An experiment was conducted on day old 168 broiler chicks to study the effect of 0.4% as well as 0.2% (madar) leaf powder and 0.
View Article and Find Full Text PDFHistone proteins are subjected to a wide array of reversible and irreversible post-translational modifications (PTMs) (Bannister and Kouzarides, 2011; Azad and Tomar, 2014). The PTMs on histones are known to regulate chromatin structure and function. Histones are irreversibly modified by proteolytic clipping of their tail domains.
View Article and Find Full Text PDFProteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver.
View Article and Find Full Text PDFProtein Expr Purif
February 2016
Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization.
View Article and Find Full Text PDFGlutamate dehydrogenase has been recently identified as a tissue-specific histone H3-specific clipping enzyme. We have previously shown that it cleaves free as well as chromatin-bound histone H3. However, the physiological significance of this enzyme is still not clear.
View Article and Find Full Text PDFEbselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood.
View Article and Find Full Text PDFGene expression is a multi-step process which requires recruitment of several factors to promoters. One of the factors, Sen1p is an RNA/DNA helicase implicated in transcriptional termination and RNA processing in yeast. In the present study, we have identified a novel function of Sen1p that regulates the expression of ribonucleotide reductase RNR1 gene, which is essential for maintaining genomic integrity.
View Article and Find Full Text PDFClipping of histone tails has been reported in several organisms. However, the significance and regulation of histone tail clipping largely remains unclear. According to recent discoveries H3 clipping has been found to be involved in regulation of gene expression and chromatin dynamics.
View Article and Find Full Text PDF