Publications by authors named "Sakrapee Paisitkriangkrai"

Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes.

View Article and Find Full Text PDF

Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing.

View Article and Find Full Text PDF

Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the prescribed range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC).

View Article and Find Full Text PDF

The use of high-dimensional features has become a normal practice in many computer vision applications. The large dimension of these features is a limiting factor upon the number of data points which may be effectively stored and processed, however. We address this problem by developing a novel approach to learning a compact binary encoding, which exploits both pair-wise proximity and class-label information on training data set.

View Article and Find Full Text PDF

We present a scalable and effective classification model to train multiclass boosting for multiclass classification problems. A direct formulation of multiclass boosting had been introduced in the past in the sense that it directly maximized the multiclass margin. The major problem of that approach is its high computational complexity during training, which hampers its application to real-world problems.

View Article and Find Full Text PDF

We propose a novel boosting approach to multiclass classification problems, in which multiple classes are distinguished by a set of random projection matrices in essence. The approach uses random projections to alleviate the proliferation of binary classifiers typically required to perform multiclass classification. The result is a multiclass classifier with a single vector-valued parameter, irrespective of the number of classes involved.

View Article and Find Full Text PDF

Real-time object detection has many computer vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detection system, much effort has been spent on improving the boosting method. In this work, we first show that feature selection methods other than boosting can also be used for training an efficient object detector.

View Article and Find Full Text PDF

The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand.

View Article and Find Full Text PDF