Polymethoxyflavones from rhizomes have been shown to effectively combat aging in skin cells and tissues by inhibiting senescence, reducing oxidative stress, and enhancing skin structure and function. This study assessed the anti-aging effects and safety of standardized extract (BG100), enriched with polymethoxyflavones including 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone, 3,5,7-trimethoxyflavone, and 3,5,7,4'-tetramethoxyflavone. We evaluated BG100's impact on skin rejuvenation and antioxidant properties using photoaged human 3D full-thickness skin models.
View Article and Find Full Text PDFThis study presents the successful development of printable-microencapsulated ascorbic acid (AA) for personalized topical delivery using laser printing technology. Rice flour with a 10% AA content was selected as an encapsulation material. Hydrophobic nanosilica was used to create negative electrostatic charges on the microencapsulated surfaces via a high-speed mixture.
View Article and Find Full Text PDF