Publications by authors named "Sakin Kirti"

Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function.

View Article and Find Full Text PDF

The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from deafness within weeks. The mechanisms that trigger, sustain and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing.

View Article and Find Full Text PDF

Fibrosis is the life-threatening, excessive accumulation of the extracellular matrix and is sometimes associated with a loss of lipid-filled cells in the skin and other organs. Understanding the mechanisms of fibrosis and associated lipodystrophy and their reversal may reveal new targets for therapeutic intervention. In vivo genetic models are needed to identify key targets that induce recovery from established fibrosis.

View Article and Find Full Text PDF

In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells.

View Article and Find Full Text PDF