Poly(N-isopropylacrylamide) (PNIPAM)-carrying particles were characterized as thermosensitive Pickering emulsifiers. Emulsions were prepared from various oils, such as heptane, hexadecane, trichloroethylene, and toluene, with PNIPAM-carrying particles. PNIPAM-carrying particles preferentially formed oil-in-water (O/W)-type emulsions with a variety of oils.
View Article and Find Full Text PDFOrdered 2-D structures composed of poly(N-isopropylacrylamide) (PNIPAM) microgel particles that had regularity on a sub-micrometer length scale were prepared. By using sterically stabilized PNIPAM microgel particles as components, the ordered array was formed by a self-assembly process. The particle array was prepared by depositing a droplet of the microgel dispersion on a substrate.
View Article and Find Full Text PDFFour types of temperature-sensitive hairy particles were prepared by living radical graft polymerization using a photoiniferter. The hairs were poly(N-isopropylacrylamide) (N), poly(N-isopropylacrylamide)ran-poly(acrylic acid) (NA), and diblock copolymers composed of N and NA. The block copolymer was attached to the particle in different modes, that is, one has a N-block inner and a NA-block outer but the other has the inverse arrangement.
View Article and Find Full Text PDFDroplets containing polymer particles were deposited on a substrate. Poly(N-isopropylacrylamide) (PNIPAM) hydrogel and particles with PNIPAM graft chains on the surface self-assembled into a two-dimensional (2-D) superlattice when their dilute dispersions were dried on substrates. The capillary force between the particles induced ordered array formation during water evaporation.
View Article and Find Full Text PDF