Publications by authors named "Saki Yasuhara"

We investigated the effects of menstrual cycle phase on thermal sensation, thermal pleasantness, and autonomic thermoregulatory responses during mild cold exposure. Eight healthy young women participated. Experiments were conducted in the follicular and luteal phases: 120 min exposure at 23.

View Article and Find Full Text PDF

Hypohydration caused by exercise in the heat attenuates autonomic thermoregulation such as sweating and skin blood flow in humans. In contrast, it remains unknown if behavioral thermoregulation is modulated during hypohydration. We assume that thermal unpleasantness could drive the behavioral response, and would also be modulated during hypohydration.

View Article and Find Full Text PDF

The aim of this study was to determine whether estrogen modulates central and peripheral responses to cold in female rats. In ovariectomized female rats with and without administered estrogen [E(2) (+) and E(2) (-), respectively], the counts of cFos-immunoreactive cells in the medial preoptic nucleus (MPO) and dorsomedial hypothalamic nucleus (DMH) in the hypothalamus were greater in the E(2) (+) rats than in the E(2) (-) rats at 5 degrees C. Examination of the response of normal female rats to exposure to 5 degrees C at different phases of the estrus cycle revealed that counts of cFos-immunoreactive cells in the MPO, DMH, and posterior hypothalamus and the level of uncoupling protein 1 mRNA in the brown adipose tissues were greater in the proestrus phase than on day 1 of the diestrus phase.

View Article and Find Full Text PDF

Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort.

View Article and Find Full Text PDF

We report a new system for monitoring sensations of many body parts as well as comprehensively showing the distribution of overall skin temperature (T(sk)) and temperature-related sensations. The system consists of a console with 52 levers to report temperature-related sensations and software that facilitates the visualization of the distribution of T(sk) and temperature-related sensations by displaying them on a model of the human body. The system's utility was demonstrated with a physiological experiment involving three males and three females.

View Article and Find Full Text PDF