Publications by authors named "Saki Sono"

Previous studies have implicated age-associated reductions in mitochondrial oxidative phosphorylation activity in skeletal muscle as a predisposing factor for intramyocellular lipid (IMCL) accumulation and muscle insulin resistance (IR) in the elderly. To further investigate potential alterations in muscle mitochondrial function associated with aging, we assessed basal and insulin-stimulated rates of muscle pyruvate dehydrogenase (VPDH) flux relative to citrate synthase flux (VCS) in healthy lean, elderly subjects and healthy young body mass index- and activity-matched subjects. VPDH/VCS flux was assessed from the (13)C incorporation from of infused [1-13C] glucose into glutamate [4-13C] relative to alanine [3-13C] assessed by LC-tandem MS in muscle biopsies.

View Article and Find Full Text PDF

Recent studies reveal a strong relationship between reduced mitochondrial content and insulin resistance in human skeletal muscle, although the underlying factors responsible for this association remain unknown. To address this question, we analyzed muscle biopsy samples from young, lean, insulin resistant (IR) offspring of parents with type 2 diabetes and control subjects by microarray analyses and found significant differences in expression of ~512 probe pairs. We then screened these genes for their potential involvement in the regulation of mitochondrial biogenesis using RNA interference and found that mRNA and protein expression of lipoprotein lipase (LPL) in skeletal muscle was significantly decreased in the IR offspring and was associated with decreased mitochondrial density.

View Article and Find Full Text PDF

Appropriate resources and expression technology necessary for human proteomics on a whole-proteome scale are being developed. We prepared a foundation for simple and efficient production of human proteins using the versatile Gateway vector system. We generated 33,275 human Gateway entry clones for protein synthesis, developed mRNA expression protocols for them and improved the wheat germ cell-free protein synthesis system.

View Article and Find Full Text PDF

Objective: Insulin resistance in skeletal muscle plays a critical role in the pathogenesis of type 2 diabetes, yet the cellular mechanisms responsible for insulin resistance are poorly understood. In this study, we examine the role of serine phosphorylation of insulin receptor substrate (IRS)-1 in mediating fat-induced insulin resistance in skeletal muscle in vivo.

Research Design And Methods: To directly assess the role of serine phosphorylation in mediating fat-induced insulin resistance in skeletal muscle, we generated muscle-specific IRS-1 Ser(302), Ser(307), and Ser(612) mutated to alanine (Tg IRS-1 Ser-->Ala) and IRS-1 wild-type (Tg IRS-1 WT) transgenic mice and examined insulin signaling and insulin action in skeletal muscle in vivo.

View Article and Find Full Text PDF

Adiponectin has insulin-sensitizing, antiatherogenic, and anti-inflammatory properties, but little is known about factors that regulate its secretion. To examine the effect of fish oil on adiponectin secretion, mice were fed either a control diet or isocaloric diets containing 27% safflower oil or 27, 13.5, and 8% menhaden fish oil.

View Article and Find Full Text PDF

To further explore the nature of the mitochondrial dysfunction and insulin resistance that occur in the muscle of young, lean, normoglycemic, insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured mitochondrial content by electron microscopy and insulin signaling in muscle biopsy samples obtained from these individuals before and during a hyperinsulinemic-euglycemic clamp. The rate of insulin-stimulated muscle glucose uptake was approximately 60% lower in the IR offspring than the control subjects and was associated with an approximately 60% increase in the intramyocellular lipid content as assessed by H magnetic resonance spectroscopy. Muscle mitochondrial density was 38% lower in the IR offspring.

View Article and Find Full Text PDF