The intermediate-conductance Ca(2+)-activated K(+) channel KC a3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail.
View Article and Find Full Text PDFThe Ca(2+)-activated Cl(-) channel transmembrane proteins with unknown function 16 A (TMEM16A; also known as anoctamin 1 or discovered on gastrointestinal stromal tumor 1) plays an important role in facilitating the cell growth and metastasis of TMEM16A-expressing cancer cells. Histone deacetylase (HDAC) inhibitors (HDACi) are useful agents for cancer therapy, but it remains unclear whether ion channels are epigenetically regulated by them. Using real-time polymerase chain reaction, Western blot analysis, and whole-cell patch-clamp assays, we found a significant decrease in TMEM16A expression and its functional activity was induced by the vorinostat, a pan-HDACi in TMEM16A-expressing human cancer cell lines, the prostatic cancer cell line PC-3, and the breast cancer cell line YMB-1.
View Article and Find Full Text PDF