The introduction of combined fillers can effectively improve the mechanical and tribological properties of polytetrafluoroethylene (PTFE). In this work, three different types of nanosized fillers (zirconium dioxide, silicon dioxide, and boron nitride) were introduced in a carbon fiber-reinforced polymer matrix for the development of polymer composite materials (PCM). Tensile and compressive testing were carried out, and the hardness of created PCM was evaluated.
View Article and Find Full Text PDFThe aim of the study is the development of two-layer materials based on ultra-high-molecular-weight polyethylene (UHMWPE) and isoprene rubber (IR) depending on the vulcanization accelerators (2-mercaptobenzothiazole (MBT), diphenylguanidine (DPG), and tetramethylthiuram disulfide (TMTD)). The article presents the study of the influence of these accelerators on the properties and structure of UHMWPE. It is shown that the use of accelerators to modify UHMWPE leads to an increase in tensile strength of 28-53%, a relative elongation at fracture of 7-23%, and wear resistance of three times compared to the original UHMWPE.
View Article and Find Full Text PDFThe paper presents the results of studying the effect of borpolymer (BP) on the mechanical properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene (UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM) are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR) were used to study the melting point, morphology and composition of the filler, which corresponds to the composition and data of the certificate of the synthesized BP.
View Article and Find Full Text PDFThis paper studied the effect of additives of 0.5-20 wt.% synthetic CaSiO wollastonite on the thermodynamic, mechanical, and tribological characteristics and structure of polymer composite materials (PCM) based on ultra-high-molecular weight polyethylene (UHMWPE).
View Article and Find Full Text PDF