Publications by authors named "Saket S. Ozarkar"

Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort).

View Article and Find Full Text PDF

Recent innovations in artificial intelligence (AI) have increasingly focused on large-scale foundational models that are more general purpose in contrast to conventional models trained to perform specialized tasks. Transformer-based architectures have become the standard backbone in foundation models across data modalities (image, text, audio, video). There has been a keen interest in applying parameter-efficient fine-tuning (PEFT) methods to adapt these models to specialized downstream tasks in language and vision.

View Article and Find Full Text PDF

Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer's disease (AD) and is typically assessed through invasive procedures such as PET (positron emission tomography) or CSF (cerebrospinal fluid) assays. As new anti-Alzheimer's treatments can now successfully target amyloid pathology, there is a growing interest in predicting Aβ positivity (Aβ+) from less invasive, more widely available types of brain scans, such as T1-weighted (T1w) MRI. Here we compare multiple approaches to infer Aβ + from standard anatomical MRI: (1) classical machine learning algorithms, including logistic regression, XGBoost, and shallow artificial neural networks, (2) deep learning models based on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid ANN-CNN, combining the strengths of shallow and deep neural networks, (4) transfer learning models based on CNNs, and (5) 3D Vision Transformers.

View Article and Find Full Text PDF

Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort).

View Article and Find Full Text PDF

Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer's disease and practical tests could help identify patients who could respond to treatment, now that promising anti-amyloid drugs are available. Even so, Aβ positivity (Aβ+) is assessed using PET or CSF assays, both highly invasive procedures. Here, we investigate how well Aβ+ can be predicted from T1 weighted brain MRI and gray matter, white matter and cerebrospinal fluid segmentations from T1-weighted brain MRI (T1w), a less invasive alternative.

View Article and Find Full Text PDF