Publications by authors named "Saket Navlakha"

Finding optimal bipartite matchings-e.g., matching medical students to hospitals for residency, items to buyers in an auction, or papers to reviewers for peer review-is a fundamental combinatorial optimization problem.

View Article and Find Full Text PDF

Recording and analysis of neural activity are often biased toward detecting sparse subsets of highly active neurons, masking important signals carried in low-magnitude and variable responses. To investigate the contribution of seemingly noisy activity to odor encoding, we used mesoscale calcium imaging from mice of both sexes to record odor responses from the dorsal surface of bilateral olfactory bulbs (OBs). The outer layer of the mouse OB is comprised of dendrites organized into discrete "glomeruli," which are defined by odor receptor-specific sensory neuron input.

View Article and Find Full Text PDF

Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a comprehensive database encompassing complete single amino acid mutational assays of 10,750 TCR-peptide pairs, centered around 14 immunogenic peptides against 66 TCRs. We then present an interpretable Bayesian model, called BATMAN, that can predict the set of peptides that activates a TCR.

View Article and Find Full Text PDF

Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx).

View Article and Find Full Text PDF

Catastrophic forgetting remains an outstanding challenge in continual learning. Recently, methods inspired by the brain, such as continual representation learning and memory replay, have been used to combat catastrophic forgetting. Associative learning (retaining associations between inputs and outputs, even after good representations are learned) plays an important function in the brain; however, its role in continual learning has not been carefully studied.

View Article and Find Full Text PDF

Keeping track of the number of times different stimuli have been experienced is a critical computation for behavior. Here, we propose a theoretical two-layer neural circuit that stores counts of stimulus occurrence frequencies. This circuit implements a data structure, called a count sketch, that is commonly used in computer science to maintain item frequencies in streaming data.

View Article and Find Full Text PDF

Feedback control is used by many distributed systems to optimize behaviour. Traditional feedback control algorithms spend significant resources to constantly sense and stabilize a continuous control variable of interest, such as vehicle speed for implementing cruise control, or body temperature for maintaining homeostasis. By contrast, discrete-event feedback (e.

View Article and Find Full Text PDF

Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity.

View Article and Find Full Text PDF

Creating a routing backbone is a fundamental problem in both biology and engineering. The routing backbone of the trail networks of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food sources using trail pheromone deposited by ants as they walk. Unlike species that forage on the ground, the trail networks of arboreal ants are constrained by the vegetation.

View Article and Find Full Text PDF

A fundamental challenge at the interface of machine learning and neuroscience is to uncover computational principles that are shared between artificial and biological neural networks. In deep learning, normalization methods such as batch normalization, weight normalization, and their many variants help to stabilize hidden unit activity and accelerate network training, and these methods have been called one of the most important recent innovations for optimizing deep networks. In the brain, homeostatic plasticity represents a set of mechanisms that also stabilize and normalize network activity to lie within certain ranges, and these mechanisms are critical for maintaining normal brain function.

View Article and Find Full Text PDF

Background: Accurately predicting outcomes for cancer patients with COVID-19 has been clinically challenging. Numerous clinical variables have been retrospectively associated with disease severity, but the predictive value of these variables, and how multiple variables interact to increase risk, remains unclear.

Methods: We used machine learning algorithms to predict COVID-19 severity in 348 cancer patients at Memorial Sloan Kettering Cancer Center in New York City.

View Article and Find Full Text PDF

Numerous types of biological branching networks, with varying shapes and sizes, are used to acquire and distribute resources. Here, we show that plant root and shoot architectures share a fundamental design property. We studied the spatial density function of plant architectures, which specifies the probability of finding a branch at each location in the 3-dimensional volume occupied by the plant.

View Article and Find Full Text PDF

Habituation is a form of simple memory that suppresses neural activity in response to repeated, neutral stimuli. This process is critical in helping organisms guide attention toward the most salient and novel features in the environment. Here, we follow known circuit mechanisms in the fruit fly olfactory system to derive a simple algorithm for habituation.

View Article and Find Full Text PDF

Motivation: Developing methods to efficiently analyze 3D point cloud data of plant architectures remain challenging for many phenotyping applications. Here, we describe a tool that tackles four core phenotyping tasks: classification of cloud points into stem and lamina points, graph skeletonization of the stem points, segmentation of individual lamina and whole leaf labeling. These four tasks are critical for numerous downstream phenotyping goals, such as quantifying plant biomass, performing morphological analyses of plant shapes and uncovering genotype to phenotype relationships.

View Article and Find Full Text PDF

In animal models, time-restricted feeding (TRF) can prevent and reverse aspects of metabolic diseases. Time-restricted eating (TRE) in human pilot studies reduces the risks of metabolic diseases in otherwise healthy individuals. However, patients with diagnosed metabolic syndrome often undergo pharmacotherapy, and it has never been tested whether TRE can act synergistically with pharmacotherapy in animal models or humans.

View Article and Find Full Text PDF

Developing automated methods to efficiently process large volumes of point cloud data remains a challenge for three-dimensional (3D) plant phenotyping applications. Here, we describe the development of machine learning methods to tackle three primary challenges in plant phenotyping: lamina/stem classification, lamina counting, and stem skeletonization. For classification, we assessed and validated the accuracy of our methods on a dataset of 54 3D shoot architectures, representing multiple growth conditions and developmental time points for two Solanaceous species, tomato () and Using deep learning, we classified lamina versus stems with 97.

View Article and Find Full Text PDF

Understanding the optimization objectives that shape shoot architectures remains a critical problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot architectures, including wildtype and 10 mutant strains, and we uncovered a design principle that describes how architectures make trade-offs between competing objectives. First, we used graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal that can be captured as maximizing performance in transporting nutrients and minimizing costs in building the architecture.

View Article and Find Full Text PDF

The mechanisms of bacterial chemotaxis have been extensively studied for several decades, but how the physical environment influences the collective migration of bacterial cells remains less understood. Previous models of bacterial chemotaxis have suggested that the movement of migrating bacteria across obstacle-laden terrains may be slower compared with terrains without them. Here, we show experimentally that the size or density of evenly spaced obstacles do not alter the average exit rate of cells from microchambers in response to external attractants, a function that is dependent on intact cell-cell communication.

View Article and Find Full Text PDF

Both engineered and biological transportation networks face trade-offs in their design. Network users desire to quickly get from one location in the network to another, whereas network planners need to minimize costs in building infrastructure. Here, we use the theory of Pareto optimality to study this design trade-off in the road networks of 101 cities, with wide-ranging population sizes, land areas and geographies.

View Article and Find Full Text PDF

Neural arbors (dendrites and axons) can be viewed as graphs connecting the cell body of a neuron to various pre- and post-synaptic partners. Several constraints have been proposed on the topology of these graphs, such as minimizing the amount of wire needed to construct the arbor (wiring cost), and minimizing the graph distances between the cell body and synaptic partners (conduction delay). These two objectives compete with each other-optimizing one results in poorer performance on the other.

View Article and Find Full Text PDF

Biomarkers of aging can be used to assess the health of individuals and to study aging and age-related diseases. We generate a large dataset of genome-wide RNA-seq profiles of human dermal fibroblasts from 133 people aged 1 to 94 years old to test whether signatures of aging are encoded within the transcriptome. We develop an ensemble machine learning method that predicts age to a median error of 4 years, outperforming previous methods used to predict age.

View Article and Find Full Text PDF

Novelty detection is a fundamental biological problem that organisms must solve to determine whether a given stimulus departs from those previously experienced. In computer science, this problem is solved efficiently using a data structure called a Bloom filter. We found that the fruit fly olfactory circuit evolved a variant of a Bloom filter to assess the novelty of odors.

View Article and Find Full Text PDF

We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing problem: maintaining a trail network and finding alternative paths to route around broken links in the network. Turtle ants form a routing backbone of foraging trails linking several nests and temporary food sources. This species travels only in the trees, so their foraging trails are constrained to lie on a natural graph formed by overlapping branches and vines in the tangled canopy.

View Article and Find Full Text PDF