Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels.
View Article and Find Full Text PDFMetabolic engineering efforts that harness living organisms to produce natural products and other useful chemicals face inherent difficulties because the maintenance of life processes often runs counter to our desire to maximize important production metrics. These challenges are particularly problematic for commodity chemical manufacturing where cost is critical. A cell-free approach, where biochemical pathways are built by mixing desired enzyme activities outside of cells, can obviate problems associated with cell-based methods.
View Article and Find Full Text PDFMost biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.
View Article and Find Full Text PDFMicrobial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE).
View Article and Find Full Text PDF