The selenides of platinum-group metals (PGMs) are emerging as promising catalysts for diverse electrochemical reactions. To date, most studies have focused on single metal or bimetallic systems, whereas the preparation of a high-entropy (HE) selenide consisting of five or more PGM elements holds the promise to further enhance catalytic performance by introducing abundant active sites with various local coordination environments and electronic structures. Herein, we report for the first time the synthesis of PGM-based HE-Selenide (HE-Se) nanoparticles with a unique amorphous structure.
View Article and Find Full Text PDFThe demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed.
View Article and Find Full Text PDFSolid-solution alloys based on platinum group metals and p-block metals have attracted much attention due to their promising potential as materials with a continuously fine-tunable electronic structure. Here, we report on the first synthesis of novel solid-solution RuSn alloy nanoparticles (NPs) by electrochemical cyclic voltammetry sweeping of RuSn@SnO NPs. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy maps confirmed the random and homogeneous distribution of Ru and Sn elements in the alloy NPs.
View Article and Find Full Text PDFArtificial superlattice films made of Pb(ZrTi)O and Pb(ZrTi)O were investigated for their polarization states and piezoelectric properties theoretically and experimentally in this study. The developed theory predicts nontrivial polarization along neither [001] nor [111] directions in (111)-epitaxial monodomain superlattice films with uniform compressive strain. Such films were achieved via pulsed laser deposition.
View Article and Find Full Text PDFThe surface oxidation states of the metal electrodes affect the activity, selectivity, and stability of the electrocatalysts. Oxide formation and reduction on such electrodes must be comprehensively understood to achieve next-generation electrocatalysts with outstanding performance and stability. Herein, the initial electrochemical oxidation of Pt(111) in alkaline media containing hydrophilic and hydrophobic cations is investigated by X-ray crystal truncation rod (CTR) scattering, infrared (IR) spectroscopy, and nanoparticle-based surface-enhanced Raman spectroscopy (SERS).
View Article and Find Full Text PDFOver the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials.
View Article and Find Full Text PDFMultielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements.
View Article and Find Full Text PDFHighly active electrocatalysts for the oxygen evolution reaction (OER) are essential to improve the efficiency of water electrolysis. The properties of OER active sites on single-crystal Pt electrodes were examined herein. The OER is markedly enhanced by repeated oxidative and reductive potential cycles on the Pt(111) surface.
View Article and Find Full Text PDFIn alkaline solutions, interfacial cations affect the hydrogen evolution reaction (HER) activity of platinum electrodes. However, the effects of cations on the HER activity have not been previously investigated based on interfacial structures. surface X-ray diffraction was performed on Pt(110), of which the HER activity is the highest in the low-index planes of Pt, at hydrogen evolution potentials in alkaline solutions, and revealed the interfacial structure of alkali metal cations (Li and Cs).
View Article and Find Full Text PDFHigh-entropy alloy nanoparticles (HEA NPs) emerged as catalysts with superior performances that are not shown in monometallic catalysts. Although many kinds of synthesis techniques of HEA NPs have been developed recently, synthesizing HEA NPs with ultrasmall particle size and narrow size distribution remains challenging because most of the reported synthesis methods require high temperatures that accelerate particle growth. This work provides a new methodology for the fabrication of ultrasmall and homogeneous HEA NPs using a continuous-flow reactor with a liquid-phase reduction method.
View Article and Find Full Text PDFThe compositional space of high-entropy-alloy nanoparticles (HEA NPs) significantly expands the diversity of the materials library. Every atom in HEA NPs has a different elemental coordination environment, which requires knowledge of the local electronic structure at an atomic level. However, such structure has not been disclosed experimentally or theoretically.
View Article and Find Full Text PDFMetal-organic framework (MOF) thin films have recently attracted much attention as a new platform for surface/interface research, where unconventional structural and physical properties emerge. Among the many MOFs as candidates for fabrication of thin films, Hofmann-type MOFs {Fe(pz)[M(CN)]} [pz = pyrazine; M = Ni (), M = Pt ()] are attractive, because they undergo spin transitions with concomitant structural changes. Here, we demonstrate the first example of a strain-controlled spin transition in heterostructured MOF thin films.
View Article and Find Full Text PDFSide reactions of the charge/discharge in Li-ion batteries (LIBs) generate a solid-electrolyte interface (SEI) onto an electrode surface, resulting in the degradation of the lifetime of a cell. The suppression of SEI formations has attracted much attention for achieving longer cyclable LIBs. Our research group has previously reported that few SEI were observed at triple-phase interfaces (TPIs) consisting of BaTiO, LiCoO, and electrolyte interfaces in LIBs with excellent cyclability and ultrahigh-speed chargeability.
View Article and Find Full Text PDFThe hydrogen storage capacity of Pd nanoparticles (NPs) decreases as the particles become smaller; however, this reduced capacity is ameliorated by addition of Pt. In the present work, the hydrogen storage mechanism and structural transformations of core (Pd)-shell (Pt) (CS) and solid-solution (SS) NPs during hydrogen absorption and desorption (PHAD) processes are investigated. In situ X-ray absorption spectroscopy measurements were performed to study the evolution of electronic and local structures around Pd and Pt during PHAD.
View Article and Find Full Text PDFSince 1970, people have been making every endeavor to reduce toxic emissions from automobiles. After the development of a three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NO ), Rh became an essential element in automobile technology because only Rh works efficiently for catalytic NO reduction. However, due to the sharp price spike in 2007, numerous efforts have been made to replace Rh in TWCs.
View Article and Find Full Text PDFWe synthesized a palladium-ruthenium-boron (Pd-Ru-B) solid-solution ternary alloy. Elemental mappings confirmed successful alloying of B with Pd-Ru body without changing the particle sizes, demonstrating the first discovery of this ternary alloy. Pair distribution function analysis revealed a drastic decrease in atomic correlation in Pd-Ru nanoparticles by B doping.
View Article and Find Full Text PDF