Three triple bond-conjugated naphthalene diimide (NDI) copolymers, poly{[ N, N'-bis(2-R)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-[(2,5-bis(2-R)-1,4-phenylene)bis(ethyn-2,1-diyl)]} (PNDIR-R), were synthesized via Sonogashira coupling polymerization with varying alkyl side chains at the nitrogen atoms of the imide ring and 2,5-positions of the 1,4-diethynylbenzene moiety. Considering their identical polymer backbone structures, the side chains were found to have a strong influence on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO) chain at the 2,5-positions of 1,4-diethynylbenzene, P(NDIOD-HO), exhibited the highest electron mobility of 0.
View Article and Find Full Text PDFA series of squaraine-based sensitizers with various π bridges and anchors were prepared and examined in dye-sensitized solar cells. The carboxylic anchor group was attached onto a squaraine dye through π bridges with and without an ethynyl spacer. DFT studies indicate that the LUMO is delocalized throughout the dyes, whilst the HOMO resides on the squaraine core.
View Article and Find Full Text PDFAir-stable dimers of sandwich compounds including rhodocene and (pentamethylcyclopentadienyl)(arene)ruthenium and iron derivatives can be used for n-doping electron-transport materials with electron affinities as small as 2.8 eV. A p-i-n homojunction diode based on copper phthalocyanine and using rhodocene dimer as n-dopant shows a rectification ratio of greater than 10(6) at 4 V.
View Article and Find Full Text PDFThe electronic properties of the 2,6-diiododithieno[3,2-b:2',3'-d] thiophene molecule and crystal are investigated by means of UV-vis spectroscopy, cyclic voltammetry, X-ray crystallography, and density functional theory. The experimental and calculated properties of the compound are compared to those exhibited by the parent molecule, dithieno[3,2-b:2',3'-d]thiophene. Quantum-chemical studies of the 2,6-diiododithieno[3,2-b:2',3'-d]thiophene crystal suggest uniaxial hole-transport character with an effective mass of about 2m(0), comparable to that in the pentacene single crystal.
View Article and Find Full Text PDFExperimental and theoretical results are presented on the electronic structure of molybdenum tris[1,2-bis(trifluoromethyl) ethane-1,2-dithiolene] (Mo(tfd)(3)), a high electron-affinity organometallic complex that constitutes a promising candidate as a p-dopant for organic molecular semiconductors. The electron affinity of the compound, determined via inverse photoemission spectroscopy, is 5.6 eV, which is 0.
View Article and Find Full Text PDFThe photophysical properties for a series of facial (fac) cyclometalated Ir(III) complexes (fac-Ir(C--N)(3) (C--N = 2-phenylpyridyl (ppy), 2-(4,6-difluorophenyl)pyridyl (F2ppy), 1-phenylpyrazolyl (ppz), 1-(2,4-difluorophenyl)pyrazolyl) (F2ppz), and 1-(2-(9,9'-dimethylfluorenyl))pyrazolyl (flz)), fac-Ir(C--N)(2)(C--N') (C--N = ppz or F2ppz and C--N' = ppy or F2ppy), and fac-Ir(C--C')(3) (C--C' = 1-phenyl-3-methylbenzimidazolyl (pmb)) have been studied in dilute 2-methyltetrahydrofuran (2-MeTHF) solution in a temperature range of 77-378 K. Photoluminescent quantum yields (Phi) for the 10 compounds at room temperature vary between near zero and unity, whereas all emit with high efficiency at low temperature (77 K). The quantum yield for fac-Ir(ppy)(3) (Phi = 0.
View Article and Find Full Text PDFA series of cationic Ir(III) complexes with the general formula (C/N)2Ir(N/N)(+)PF6- featuring bis-cyclometalated 1-phenylpyrazolyl-N,C2' (C/N) and neutral diimine (N/N, e.g., 2,2'-bipyridyl) ligands were synthesized and their electrochemical, photophysical, and electroluminescent properties studied.
View Article and Find Full Text PDFTwo approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)(3) (ppz = 1-phenylpyrazolyl-N,C(2)'). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e.
View Article and Find Full Text PDFPhys Rev B Condens Matter
February 1992
Phys Rev B Condens Matter
April 1990
Phys Rev B Condens Matter
August 1989