Object recognition and making a choice regarding the recognized object is pivotal for most animals. This process in the brain contains information representation and decision making steps which both take different amount of times for different objects. While dynamics of object recognition and decision making are usually ignored in object recognition models, here we proposed a fully spiking hierarchical model, explaining the process of object recognition from information representation to making decision.
View Article and Find Full Text PDFPrivate, subjective beliefs about uncertainty have been found to have idiosyncratic computational and neural substrates yet, humans share such beliefs seamlessly and cooperate successfully. Bringing together decision making under uncertainty and interpersonal alignment in communication, in a discovery plus pre-registered replication design, we examined the neuro-computational basis of the relationship between privately held and socially shared uncertainty. Examining confidence-speed-accuracy trade-off in uncertainty-ridden perceptual decisions under social vs isolated context, we found that shared (i.
View Article and Find Full Text PDFAnimals including humans must cope with immediate threat and make rapid decisions to survive. Without much leeway for cognitive or motor errors, this poses a formidable computational problem. Utilizing fully immersive virtual reality with 13 natural threats, we examined escape decisions in N = 59 humans.
View Article and Find Full Text PDFThe underlying mechanism of object recognition- a fundamental brain ability- has been investigated in various studies. However, balancing between the speed and accuracy of recognition is less explored. Most of the computational models of object recognition are not potentially able to explain the recognition time and, thus, only focus on the recognition accuracy because of two reasons: lack of a temporal representation mechanism for sensory processing and using non-biological classifiers for decision-making processing.
View Article and Find Full Text PDFBrain can recognize different objects as ones it has previously experienced. The recognition accuracy and its processing time depend on different stimulus properties such as the viewing conditions, the noise levels, etc. Recognition accuracy can be explained well by different models.
View Article and Find Full Text PDFComput Intell Neurosci
July 2021
Local contrasts attract human attention to different areas of an image. Studies have shown that orientation, color, and intensity are some basic visual features which their contrasts attract our attention. Since these features are in different modalities, their contribution in the attraction of human attention is not easily comparable.
View Article and Find Full Text PDFMost decisions require information gathering from a stimulus presented with different gaps. However, the neural mechanism underlying this integration is ambiguous. Recently, it has been claimed that humans can optimally integrate the information of two discrete pulses independent of the temporal gap between them.
View Article and Find Full Text PDFBias in perceptual decisions can be generally defined as an effect which is controlled by factors other than the decision-relevant information (e.g., perceptual information in a perceptual task, when trials are independent).
View Article and Find Full Text PDFPrinciples of efficient coding suggest that the peripheral units of any sensory processing system are designed for efficient coding. The function of the lateral geniculate nucleus (LGN) as an early stage in the visual system is not well understood. Some findings indicate that similar to the retina that decorrelates input signals spatially, the LGN tends to perform a temporal decorrelation.
View Article and Find Full Text PDFThe human visual system is developed by viewing natural scenes. In controlled experiments, natural stimuli therefore provide a realistic framework with which to study the underlying information processing steps involved in human vision. Studying the properties of natural images and their effects on the visual processing can help us to understand underlying mechanisms of visual system.
View Article and Find Full Text PDF