Background: The main characteristic of asthma is chronic inflammation. We examined cellular senescence by histology and molecular assay in the lungs of a rat model of asthma. This model comprises sensitization by several intraperitoneal injections of ovalbumin with aluminium hydroxide, followed by aerosol challenges every other day.
View Article and Find Full Text PDFStructural and functional recovery from stress-induced depression is impaired in the context of aging brain. Since investigating the molecular substrates that facilitate behavioral recovery may have important implications for understanding brain plasticity and resilience of individuals, we studied depressive-like behaviors in young and aged rats 6 weeks after chronic stress exposure as a recovery period and examined the levels of TNF-α and IL-6 inflammatory cytokines, NADH oxidase activity, NADPH oxidase, endoplasmic reticulum (ER) stress markers, and apoptosis in the hippocampus. Young (3 months old) and aged (22 months old) male Wistar rats were divided into four groups; young control (Young), depression model of young rats that received chronic stress procedure followed by a 6-week recovery period (Young+S), aged control (Aged), and depression model of aged rats that received chronic stress procedure followed by a 6-week recovery period (Aged+S).
View Article and Find Full Text PDFBackground: To circumvent some pitfalls related to acute status, chronic model of asthma is conceived to be more suitable approach to guarantee the conditions which are similar to human pulmonary disease. Here, possible therapeutic mechanisms were monitored by which c-kit bone marrow cells can attenuate vascular inflammation in rat model of chronic asthma.
Results: Data revealed c-Kit cells could significantly reduce pathological injures in asthmatic rats via modulating the expression of IL-4, INF-γ, ICAM-1 and VCAM-1 in lung tissues and TNF-α, IL-1β and NO levels in BALF (p < 0.