Objective: In the present study, we aimed to develop a virtual simulation that allows pharmacy students to play through actual prescriptions and pharmacy practice scenarios productively and on a personal computer. If designed properly, this program may serve as a supplementary educational tool without the need for an existing human tutor that could provide learning outcomes as good as those resulting from traditional paper-based pharmacy practice tutorials.
Methods: A computer-based simulation of a community pharmacy was developed.
Providing affinity sites on alginate (ALG) matrix enables specific binding of growth factors to the polymer backbone and allows their release in a controlled fashion. In this study, we used a blend of alginate sulfate (ALG-S) and polyvinyl alcohol (PVA) to fabricate electrospun scaffolds capable of delivering a heparin-like growth factor, transforming growth factor-beta1 (TGF-β1). The alginate was sulfated with different degrees of sulfation (DS, from 0.
View Article and Find Full Text PDFBackground: Wound infections caused by methicillin-resistant Staphylococcus aureus are a health problem worldwide; therefore, it is necessary to develop new antimicrobial compounds. Considering broad-spectrum antimicrobial activity and low probability of drug resistance to peptides, applications these peptides are being studied extensively.
Objectives: In this study, to control drug release over time, an alginate sulfate-based hydrogel impregnated with the CM11 peptide as the antimicrobial agent was developed, and its healing effects were tested on skin infections caused by methicillin-resistant S.