Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFBenzene, toluene, ethyl benzene, and xylene (BTEX) are prevalent pollutants in shoe industry-related workplaces. The aim of this study was to assess exposure to BTEX and their carcinogenic and non-carcinogenic risks in shoe-industry-related workplaces. This study was carried out at different shoe manufactures, small shoe workshop units, shoe markets, and shoe stores in Tabriz, Iran in 2021.
View Article and Find Full Text PDFThrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding.
View Article and Find Full Text PDFAmphotericin B (AmB) is an antifungal and antiparasitic agent that is the main drug used for the treatment of mycoses infections and leishmaniasis. However, its high toxicity and side effects are the main difficulties attributed to its application. In this study, to minimize its harmful effects, AmB-loaded core-shell nanofibers were fabricated, using polyvinyl alcohol, chitosan, and AmB as the core, and polyethylene oxide and gelatin as the shell-forming components.
View Article and Find Full Text PDFCutaneous leishmaniasis (CL) is a significant public health problem caused by different species of Leishmania parasites. Due to low skin permeability, the development of an effective system for delivery of Amphotericin B (AMB), the common effective drug for leishmaniasis treatment, is required to replace the unpleasant and problematic injections. To overcome this problem, a dissolvable microneedle (MN) patch was developed, using biodegradable polymers (a mixture of polyvinylpyrrolidone and carboxymethyl cellulose) for AMB's transdermal delivery.
View Article and Find Full Text PDFTreatment of skin injuries is still facing major challenges, such as chronicity and infections, particularly those caused by multi-drug resistance pathogens. An effective treatment of such wounds should accelerate the wound healing process while preventing bacterial contamination. Here, a novel core-shell nanofiber mat was fabricated comprising gelatin/polyvinyl alcohol (as a core) and aloe vera/arabinose/polyvinylpyrrolidone (as a shell) for accelerating the healing process of bacteria-infected wounds.
View Article and Find Full Text PDFWounds are prone to bacterial infections, which cause a delayed healing process. Regarding the emergence of bacterial resistance to common antibiotics, using natural antimicrobial agents can be beneficial. Chitosan is a biological polymer, which has shown partial antioxidant and antimicrobial activities.
View Article and Find Full Text PDF