Introduction: Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by enhancing targeted efficacy and minimizing side effects.
View Article and Find Full Text PDFPurpose: We report on the design of hypoxia-induced dual-stage acting dendrimeric nanoparticles (NPs) for selective delivery of two chemotherapeutic model drugs doxorubicin (DOX) and tirapazamin (TPZ) for deepened drug delivery into hypoxic tumors .
Methods: PAMAM G5 dendrimers were crosslinked with a hypoxic azo linker, attached to a mPEG to form a detachable corona on the dendrimer surface (PAP NPs). NPs were characterized by Zeta sizer, transmission electron microscope (TEM), Fourier transforms infrared (FTIR) and drug release kinetics.
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases).
View Article and Find Full Text PDFThe emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall.
View Article and Find Full Text PDF