Publications by authors named "Sajita Shah"

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines.

View Article and Find Full Text PDF

In this study, a new series of 3-arylidene-4,6-dimethyl-5-hydroxy-7-azaoxindole compounds with a wide range of functional groups were designed, synthesized, and evaluated for their antitumor activity. Among the 35 compounds, compound 6-15, with a quinoline moiety, showed cytotoxic IC values superior to those of sunitinib against the seven cancer cell lines (MCF-7, MDA-MB-231, HT-29, DU145, U937, A549, and PANC-1). However, its inhibitory activity against receptor tyrosine kinases (VEGFR2, PDGFRβ, c-KIT, FGFR1, FLT3, CSF1R, EGFR, Axl, and Axl mutant) was 100 -3000-fold weaker than that of sunitinib.

View Article and Find Full Text PDF

Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME.

View Article and Find Full Text PDF

Studies in the field of angiogenesis have been aggressively growing in the last few decades with the recognition that angiogenesis is a hallmark of more than 50 different pathological conditions, such as rheumatoid arthritis, oculopathy, cardiovascular diseases, and tumor metastasis. During angiogenesis drug development, it is crucial to use in vitro assay systems with appropriate cell types and proper conditions to reflect the physiologic angiogenesis process. To overcome limitations of current in vitro angiogenesis assay systems using mainly endothelial cells, we developed a 3-dimensional (3D) co-culture spheroid sprouting assay system.

View Article and Find Full Text PDF

Occupational exposure of workers to 1-bromopropane (1-BP) has raised concerns in industry for many years. Despite the known toxicity of this chemical, molecular events attributed to exposure to 1-BP have not been extensively studied. The aim of the present study was to examine the effects of 1-BP exposure on adduct formation with DNA and glutathione (GSH) in male Sprague-Dawley rats in an attempt to determine the early stages of toxicity.

View Article and Find Full Text PDF

Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties.

View Article and Find Full Text PDF

Background And Purpose: In this study, we examined the possibility that 4-hydroxynonenal (4-HNE) acting as a ligand for the HCA receptor (GPR109A) elicits both anti-inflammatory and cell death responses.

Experimental Approach: Agonistic activity of 4-HNE was determined by observing the inhibition of cAMP generation in CHO-K1-GPR109A-G cell line, using surface plasmon resonance (SPR) binding and competition binding assays with [ H]-niacin. 4-HNE-mediated signalling pathways and cellular responses were investigated in cells expressing GPR109A and those not expressing these receptors.

View Article and Find Full Text PDF

Angiogenesis plays important roles in tumor growth and metastasis. Sunitinib (Sutent®) is an antitumor agent targeting receptor tyrosine kinases which are involved in angiogenesis as well as cancer cell growth and survival. Using the pyridin-3-ol scaffold, which was previously reported as an excellent antioxidant and antiangiogenic platform, we have synthesized sunitinib mimics 6 by hybridizing bicyclic pyridinol 4 as a key scaffold and pyrrole-2-carbaldehydes 7 as side chains.

View Article and Find Full Text PDF

Accumulated gene mutations in cancer suggest that multi-targeted suppression of affected signaling networks is a promising strategy for cancer treatment. In the present study, we report that 7-O-succinyl macrolactin A (SMA) suppresses tumor growth by stabilizing the β-catenin destruction complex, which was achieved through inhibition of regulatory components associated with the complex. SMA significantly reduced the activities of PI3K/Akt, which corresponded with a decrease in GSK3β phosphorylation, an increase in β-catenin phosphorylation, and a reduction in nuclear β-catenin content in HT29 human colon cancer cells.

View Article and Find Full Text PDF