Exposure to persistent organic pollutants including dichlorodiphenyltrichloroethane (DDT) induces insulin resistance. But the mechanism is not clearly known. The present study was designed to explore the effect of subtoxic DDT exposure on (1) insulin-stimulated glucose uptake, (2) malondialdehyde (MDA) level and total antioxidant content, (3) activation of redox sensitive kinases (RSKs), and (4) insulin signaling in rat L6 myoblast-derived myotubes.
View Article and Find Full Text PDFObjectives: Sub-chronic exposures to chlorpyrifos, an organophosphorus pesticide is associated with incidence of diabetes mellitus. Biochemical basis of chlorpyrifos-induced diabetes mellitus is not known. Hence, effect of its sub-toxic exposure on redox sensitive kinases, insulin signaling and insulin-induced glucose uptake were assessed in rat muscle cell line.
View Article and Find Full Text PDFBiochemical basis of Malathion exposure-induced diabetes mellitus is not known. Hence, effects of its sub-toxic exposure on redox sensitive kinases (RSKs), insulin signaling and insulin-induced glucose uptake were assessed in rat muscle cell line. In this study, rat myoblast (L6) cells were differentiated to myotubes and were exposed to sub-toxic concentrations (10 mg/l and 20 mg/l) of Malathion for 18 hours.
View Article and Find Full Text PDFLindane exposure is claimed to be involved in pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance state by an as yet unknown mechanism. The redox sensitive kinases (RSKs) and heat shock proteins (HSPs) interfere with insulin signaling and induce insulin resistance. The present study was designed to explore the mechanism of insulin resistance induced by sub-toxic lindane exposure.
View Article and Find Full Text PDF