Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation.
View Article and Find Full Text PDFTransfer RNAs (tRNA) are decorated during biogenesis with a variety of modifications that modulate their stability, aminoacylation, and decoding potential during translation. The complex landscape of tRNA modification presents significant analysis challenges and to date no single approach enables the simultaneous measurement of important but disparate chemical properties of individual, mature tRNA molecules. We developed a new, integrated approach to analyze the sequence, modification, and aminoacylation state of tRNA molecules in a high throughput nanopore sequencing experiment, leveraging a chemical ligation that embeds the charged amino acid in an adapted tRNA molecule.
View Article and Find Full Text PDFSignaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development, as mutations in are associated with cleft lip/palate in humans and mutant mouse models display varying degrees of facial clefting. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during skeletal development in the mouse. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation.
View Article and Find Full Text PDFDNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors.
View Article and Find Full Text PDFNonsense variants underlie many genetic diseases. The phenotypic impact of nonsense variants is determined by nonsense-mediated mRNA decay (NMD), which degrades transcripts with premature termination codons (PTCs). Despite its clinical importance, the factors controlling transcript-specific and context-dependent variation in NMD activity remain poorly understood.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are key regulators of gene expression. Small molecules targeting these RBP-RNA interactions are a rapidly emerging class of therapeutics for treating a variety of diseases. Ro-08-2750 (Ro) is a small molecule identified as a competitive inhibitor of Musashi (MSI)-RNA interactions.
View Article and Find Full Text PDFIn recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer.
View Article and Find Full Text PDFBackground: The functions of RNA molecules are mainly determined by their secondary structures. These functions can also be predicted using bioinformatic tools that enable the alignment of multiple RNAs to determine functional domains and/or classify RNA molecules into RNA families. However, the existing multiple RNA alignment tools, which use structural information, are slow in aligning long molecules and/or a large number of molecules.
View Article and Find Full Text PDFUntil recently, post-transcriptional gene regulation (PTGR), in contrast to transcriptional regulation, was not extensively explored in cancer, even though it seems to be highly important. PUM proteins are well described in the PTGR of several organisms and contain the PUF RNA-binding domain that recognizes the UGUANAUA motif, located mostly in the 3' untranslated region (3'UTR) of target mRNAs. Depending on the protein cofactors recruited by PUM proteins, target mRNAs are directed towards translation, repression, activation, degradation, or specific localization.
View Article and Find Full Text PDFA new mechanism of RNA circularization driven by specific binding of miRNAs is described. We identified the 71 CUUCC pentanucleotide motifs distributed regularly throughout the entire molecule of CDR1as RNA that bind to 71 miRNAs through their seed sequence GGAAG. The sequential binding of miR-7 RNAs (71 molecules) brings both ends of CDR1as RNA (1 molecule) together and stimulate phosphodiester bond formation between nucleotides C and A at the 5' and 3' end, respectively.
View Article and Find Full Text PDFAndrogen insensitivity syndrome (AIS), manifesting incomplete virilization in 46,XY individuals, is caused mostly by androgen receptor (AR) gene mutations. Therefore, a search for mutations is a routine approach in AIS diagnosis. However, some AIS patients lack mutations, which complicates the diagnosis.
View Article and Find Full Text PDFWhile two mouse NANOS paralogues, NANOS2 and NANOS3, are crucial for maintenance of germ cells by suppression of apoptosis, the mouse NANOS1 paralogue does not seem to regulate these processes. Previously, we described a human NANOS1 p.[(Pro34Thr);(Ser83del)] mutation associated with the absence of germ cells in seminiferous tubules of infertile patients, which might suggest an anti-apoptotic role of human NANOS1.
View Article and Find Full Text PDFMammalian Pumilio (PUM) proteins are sequence-specific, RNA-binding proteins (RBPs) with wide-ranging roles. They are involved in germ cell development, which has functional implications in development and fertility. Although human PUM1 and PUM2 are closely related to each other and recognize the same RNA binding motif, there is some evidence for functional diversity.
View Article and Find Full Text PDFRegulation of proliferation, apoptosis and cell cycle is crucial for the physiology of germ cells. Their malfunction contributes to infertility and germ cell tumours. The kinesin KIF18A is an important regulator of those processes in animal germ cells.
View Article and Find Full Text PDFtRNAs have been widely studied for their role as genetic code decoders in the ribosome during translation, but have recently received new attention due to the discovery of novel roles beyond decoding, often in connection with human diseases. Yet, existing tRNA databases have not been updated for more than a decade, so they do not contain this new functional information and have not kept pace with the rate of discovery in this field. Therefore, a regularly updated database that contains information about newly discovered characteristics of tRNA molecules and can be regularly updated is strongly needed.
View Article and Find Full Text PDFInterferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE).
View Article and Find Full Text PDFRNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. Although in vivo binding sites of RBPs can now be determined genome-wide, most studies typically focused on individual RBPs. Here, we examined a large compendium of 114 high-quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the same protocol in the same cell line and representing 64 distinct RBPs.
View Article and Find Full Text PDFSPIN1 is necessary for normal meiotic progression in mammals. It is overexpressed in human ovarian cancers and some cancer cell lines. Here, we examined the functional significance and regulation of SPIN1 and SPIN3 in the TCam-2 human seminoma cell line.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) establish posttranscriptional gene regulation (PTGR) by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. A variety of experimental approaches have been developed to characterize the RNAs associated with RBPs in vitro as well as in vivo. Our laboratory developed Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP), which in combination with next-generation sequencing enables the identification of RNA targets of RBPs at a nucleotide-level resolution.
View Article and Find Full Text PDFPhotoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in combination with next-generation sequencing is a powerful method for identifying endogenous targets of RNA-binding proteins (RBPs). Depending on the characteristics of each RBP, key steps in the PAR-CLIP procedure must be optimized. Here we present a comprehensive step-by-step PAR-CLIP protocol with detailed explanations of the critical steps.
View Article and Find Full Text PDFBackground: The Nanos gene is a key translational regulator of specific mRNAs involved in Drosophila germ cell development. Disruption of mammalian homologues, Nanos2 or Nanos3, causes male infertility in mice. In humans, however, no evidence of NANOS2 or NANOS3 mutations causing male infertility has been reported.
View Article and Find Full Text PDFThe highly conserved Nanos gene was found to encode a translational repressor necessary for germ-cell development in lower organisms. The mammalian homologue, Nanos2, was recently found to be expressed in the mouse germ cells. Since its disruption caused infertility exclusively in males, we sought to study the significance of this gene in human male reproduction.
View Article and Find Full Text PDF