A novel analogue of hybrid spirooxindoles was synthesized employing a systematic multistep synthetic approach. The synthetic protocol was designed to obtain a series of spirooxindole derivatives incorporating triazolyl--triazine framework via [3 + 2] cycloaddition (32CA) reaction of azomethine ylide ( with the corresponding chalcones . Unexpectedly, the reaction underwent an alternate route, leading to the cleavage of the s-triazine moiety and yielding a series of spirooxindole derivatives incorporating a triazole motif.
View Article and Find Full Text PDFMetabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further.
View Article and Find Full Text PDFFront Chem
February 2024
Background: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies.
Aim: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through and approaches.
Methods: Anti-lymphoma potential was evaluated by alamar blue technique.
Existing drugs that are being used to treat type-2 diabetes mellitus are associated with several side effects; thus, exploring potential drug candidates is still an utter need these days. Hybrids of indenoquinoxaline and hydrazide have never been explored as antidiabetic agents. In this study, a series of new indenoquinoxaline-phenylacrylohydrazide hybrids (1-30) were synthesized, structurally characterized, and evaluated for α-amylase and α-glucosidase inhibitory activities, as well as for their antioxidant properties.
View Article and Find Full Text PDFHuman serum albumin (HSA) is a multi-domain macromolecule with diverse ligand binding capability because of its ability to allow allosteric modulation despite being a monomeric protein. Physiologically, HSA act as the primary carrier for various exogenous and endogenous compounds and fatty acids, and alter the pharmacokinetic properties of several drugs. It has antioxidant properties and is utilized therapeutically to improve the drug delivery of pharmacological agents for the treatment of several disorders.
View Article and Find Full Text PDFUnlabelled: Dengue fever presents a major health concern, and the lack of an effective vaccine or definite therapeutic regimen has led the research community to identify safe-by-design potential targets for drug discovery. Since the association of the NS2B co-factor with the protease domain of NS3 is imperative for the catalytic activity of the enzyme complex, inhibitors blocking their interaction could provide an alternative strategy to combat the dengue virus. In this context, the present study is aimed at exploring computer-assisted modeling of significant physicochemical features required for the inhibition of the dengue virus protease complex.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2023
Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction.
View Article and Find Full Text PDFOverall, drug design is a dynamic and evolving field, with researchers constantly working to improve their understanding of molecular interactions, develop new computational methods, and explore innovative techniques for creating effective and safe medications. The process can involve steps such as the identification of targets, the discovery of lead compounds, lead optimization, preliminary testing, human trials, regulatory approval and finally post-marketing surveillance, all aimed at bringing a new drug from concept to market. In this article, the synthesis of the novel triazolequinoxalin () 1-((1-hexyl-1H-1,2,3-triazol-5-yl)methyl)-3-phenylquinoxalin-2(1H)-one () is reported.
View Article and Find Full Text PDFResearchers seeking new drug candidates to treat diabetes mellitus have been exploring bioactive molecules found in nature, particularly tetrahydropyridines (THPs). A library of THPs () were synthesized via a one-pot multicomponent reaction and investigated for their inhibition potential against α-glucosidase and α-amylase enzymes. A nitrophenyl-substituted compound with IC values of 0.
View Article and Find Full Text PDFBackground: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the LUAD patients.
View Article and Find Full Text PDFThe bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia.
View Article and Find Full Text PDFThe emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of spp.
View Article and Find Full Text PDFBromodomain-containing protein 9 (BRD9), a member of the bromodomain and extra terminal domain (BET) protein family, works as an epigenetic reader. BRD9 has been considered an essential drug target for cancer, inflammatory diseases, and metabolic disorders. Due to its high similarity among other isoforms, no effective treatment of BRD9-associated disorders is available.
View Article and Find Full Text PDFInterleukin-1β (IL1β) is a keynote mediator of inflammation with diverse physiological functions, playing a fundamental role in memory and mood regulation. The pleiotropic effects of IL-1β have been proposed to be implicated in the pathogenesis and etiology of depression. Thus, targeting IL-1β offers an inimitable opportunity to develop new strategies for an alternative therapy to treat depression.
View Article and Find Full Text PDFIn continuation of our interest in identifying new α-glucosidase inhibitors with potential to become antidiabetic drugs, this work focuses on the study of 4-(dimethylaminoalkyl)piperazine-1-carbodithioate derivatives as α-glucosidase inhibitors. The eight heterocyclic piperazine-dithiocarbamate complexes studied in this work contain a variety of substitutions on their benzene ring exhibiting potent, noncompetitive inhibition of α-glucosidase. Dithiocarbamate and piperazine moieties are important pharmacophores with promising therapeutic prospects featuring facilitated drug delivery due to their lipophilic nature in addition to their α-glucosidase inhibitory activity.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a malignant liver cancer that continues to increase deaths worldwide owing to limited therapies and treatments. Computational drug repurposing is a promising strategy to discover potential indications of existing drugs. In this study, we present a systematic drug repositioning method based on comprehensive integration of molecular signatures in liver cancer tissue and cell lines.
View Article and Find Full Text PDFIsomerism plays a key role in determining potency, selectivity and type of inhibition exhibited by enzyme inhibitors. We present 20 new benzylidene-hydrazinyl-thiazole inhibitors of α-glucosidase featuring positional isomerism of the methyl group at 3 and 4 positions of their piperidine ring. This structural property helped understand their potency and selectivity to the enzyme yielding new clues to α-glucosidase inhibition.
View Article and Find Full Text PDF18β-Glycyrrhetinic acid (18β-GA) is known for several biological activities, and has been the focus of extensive research for the development of therapeutic agents. In the current study, 18β-GA-peptide conjugates 2-11 were evaluated for their in vitro α-glucosidase inhibitory and antiglycation activities. Structure-activity relationship (SAR) established and molecular interactions of active bioconjugates with the enzyme's binding sites were predicted through molecular modeling approach.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2022
The Galaninergic system consist of Galanin and its receptors, involved in neuromodulation and neurotransmission. Galanin regulate its physiologic and pathologic functions by interacting with three G-protein coupled receptors; GalR1, GalR2 and GalR3. The widespread distribution of Galanin and its receptor subtypes in central and peripheral nervous system makes them an attractive drug target for the treatment of neurological diseases.
View Article and Find Full Text PDFAurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies.
View Article and Find Full Text PDFSynapsin I (SynI) is the most abundant brain phosphoprotein present at presynaptic terminals that regulates neurotransmitter release, clustering of synaptic vesicles (SVs) at active zones, and stimulates synaptogenesis and neurite outgrowth. Earlier studies have established that SynI displays pH-dependent tethering of SVs to actin filaments and exhibits a maximum binding around neutral pH, however, the effect of pH shift from acidic to basic on the conformational stability of SynI has not been explored yet. Another important aspect of SynIa is its O-GlcNAcylation (O-GlcNac) at the Thr87 position, which is responsible for the positive regulation of synaptic plasticity linked to learning and memory in mice.
View Article and Find Full Text PDFDithiocarbamate derivatives possess diverse biological activities. This work further expands their activity profile by identifying seven benzylamine-containing dithiocarbamate derivatives with piperazine and piperidine substitutions at the main moiety, and five piperazine-containing dithiocarbamates with various substitutions at the piperazine moiety as new inhibitors of α-glucosidase. Compounds bearing the benzylamine moiety exhibited more potent inhibition of the enzyme than the piperazine derivatives.
View Article and Find Full Text PDFInterleukin-4 (IL-4), an anti-inflammatory cytokine plays significant in the development of various diseases especially asthmatic allergies. Previous structural and functional studies of IL-4 with its receptor bring forth different types of inhibitors to block their interaction but each of them failed in clinical trials. Since, no synthetic molecules have been identified against IL-4, so far.
View Article and Find Full Text PDF