In this study, we design and simulate a metal implanted dielectrically modulated tunneling field-effect transistor (MI-DMTFET). In the ambipolar conduction state, the proposed structure works as an efficient sensor for the detection of a wide range of biomolecules. A metal strip (MS) is implanted above the drain-channel junction in the gate dielectric to improve the alignment of band gaps.
View Article and Find Full Text PDFIn this work, we propose and simulate an ultrasensitive, label-free, and charge/dielectric modulated Si:HfO ferroelectric junctionless tunnel field effect transistor (FE-JL-TFET) based biosensor. The proposed sensing device employs a dual inverted-T cavity and uses ferroelectric gate stacking of Si-doped HfO, a key enabler of negative capacitance (NC) behavior. The two cavities are carved in gate-source underlap regions by a sacrificial etching technique to sense biomolecules such as streptavidin (2.
View Article and Find Full Text PDFIn this work, design and calibrated simulation of carbon nanotube field effect transistor (CNTFET)-based cascode operational transconductance amplifiers (COTA) have been performed. Three structures of CNTFET-based COTAs have been designed using HSPICE and have been compared with the conventional CMOS-based COTAs. The proposed COTAs include one using pure CNTFETs and two others that employ CNTFETs, as well as the conventional MOSFETs.
View Article and Find Full Text PDF