Publications by authors named "Saizhi Wu"

Butyrate, a short-chain fatty acid, is predominantly produced by the decomposition of dietary fiber in the colon. Recent studies have shown that sodium butyrate (NaB) can inhibit cell proliferation and stimulate cell apoptosis in colorectal cancer (CRC) cells. However, the molecular mechanism behind NaB is still elusive.

View Article and Find Full Text PDF

Dental caries is the most prevalent bacterial biofilm-induced disease. Current clinical prevention and treatment agents often suffer from adverse effects on oral microbiota diversity and normal tissues, predominately arising from the poor biofilm-targeting property of the agents. To address this concern, we herein report dual-sensitive antibacterial peptide nanoparticles pHly-1 NPs upon acid and lipid-binding for treatment of dental caries.

View Article and Find Full Text PDF

Spider venom is a valuable resource for the development of novel anticancer drugs. In this study, we focused on novel linear amphipathic α-helical anticancer peptide LVTX-9, which was derived from the cDNA library of the venom gland of the spider . The cytotoxicity of LVTX-9 against murine melanoma cells in the range of 1.

View Article and Find Full Text PDF

Organoids have complex three-dimensional structures that exhibit functionalities and feature architectures similar to those of organs and are developed from adult stem cells, embryonic stem cells, and pluripotent stem cells through a self-organization process. Organoids derived from adult epithelial stem cells are the most mature and extensive. In recent years, using organoid culture techniques, researchers have established various adult human tissue-derived epithelial organoids, including intestinal, colon, lung, liver, stomach, breast, and oral mucosal organoids, all of which exhibit strong research and application prospects.

View Article and Find Full Text PDF

Glycosylation and fatty acid modification are promising strategies to improve peptide performance. We previously studied glycosylation and fatty acid modification of the anticancer peptide R-lycosin-I. In this study, we further investigated the co-modification of fatty acids and monosaccharides in R-lycosin-I.

View Article and Find Full Text PDF