Publications by authors named "Saiyong Zhu"

Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.

View Article and Find Full Text PDF

Background: Intrahepatic cholangiocarcinoma (iCCA) is one of the most lethal malignancies and highly heterogeneous. We thus aimed to identify and characterize iCCA cell subpopulations with severe malignant features.

Methods: Transcriptomic datasets from three independent iCCA cohorts (iCCA cohorts 1-3, n = 382) and formalin-fixed and paraffin-embedded tissues from iCCA cohort 4 (n = 31) were used.

View Article and Find Full Text PDF

Cell fate transition involves dynamic changes of gene regulatory network and chromatin landscape, requiring multiple levels of regulation, yet the cross-talk between epitranscriptomic modification and chromatin signaling remains largely unknown. Here, we uncover that suppression of -acetyltransferase 10 (NAT10), the writer for mRNA -acetylcytidine (acC) modification, can notably affect human embryonic stem cell (hESC) lineage differentiation and pluripotent reprogramming. With integrative analysis, we identify that NAT10-mediated acC modification regulates the protein levels of a subset of its targets, which are strongly enriched for fate-instructive chromatin regulators, and among them, histone chaperone ANP32B is experimentally verified and functionally relevant.

View Article and Find Full Text PDF

Exogenous addition of IAA has the potential to improve the metal tolerance and phytostabilization of plants, but these effects have not been systematically investigated in naturally tolerant plants. Ryegrass ( L.) is a typical indigenous plant in the Lanping Pb/Zn mining area with high adaptability.

View Article and Find Full Text PDF

Cellular reprogramming by only small molecules holds enormous potentials for regenerative medicine. However, chemical reprogramming remains a slow process and labour intensive, hindering its broad applications and the investigation of underlying molecular mechanisms. Here, through screening of over 21,000 conditions, we develop a fast chemical reprogramming (FCR) system, which significantly improves the kinetics of cell identity rewiring.

View Article and Find Full Text PDF

Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming.

View Article and Find Full Text PDF

Pancreatic differentiation from human pluripotent stem cells (hPSCs) provides promising avenues for investigating development and treating diseases. N-methyladenosine (mA) is the most prevalent internal messenger RNA (mRNA) modification and plays pivotal roles in regulation of mRNA metabolism, while its functions remain elusive. Here, we profile the dynamic landscapes of mA transcriptome-wide during pancreatic differentiation.

View Article and Find Full Text PDF

An unlimited source of human pancreatic β cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional β cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1NKX6.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungus (AMF) is widely viewed as an ecosystem engineer to help plants adapt to adverse environments. However, a majority of the previous studies regarding AMF's eco-physiological effects are mutually inconsistent. To clarify this fundamental issue, we conducted an experiment focused on wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming.

View Article and Find Full Text PDF

Diabetes mellitus is characterized by chronic high blood glucose levels resulted from deficiency and/or dysfunction of insulin-producing pancreatic β cells. Generation of large amounts of functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes. Recent advances in directed differentiation of pancreatic β-like cells from human pluripotent stem cells (hPSCs) can provide patient-specific and disease-relevant target cells.

View Article and Find Full Text PDF

Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex systems. However, a comprehensive single-cell atlas has not been achieved for humans. Here we use single-cell mRNA sequencing to determine the cell-type composition of all major human organs and construct a scheme for the human cell landscape (HCL).

View Article and Find Full Text PDF

Transplantation of oligodendrocyte progenitor cells (OPCs) is a promising way for treating demyelinating diseases. However, generation of scalable and autologous sources of OPCs has proven difficult. We previously established a chemical condition M9 that could specifically initiate neural program in mouse embryonic fibroblasts.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) have potential applications in biological studies and regenerative medicine. However, precise genome editing in hPSCs remains time-consuming and labor-intensive. Here we demonstrate that the recently identified CRISPR-Cpf1 can be used to efficiently generate knockout and knockin hPSC lines.

View Article and Find Full Text PDF

Metabolism has been shown to integrate with epigenetics and transcription to modulate cell fate and function. Beyond meeting the bioenergetic and biosynthetic demands of T-cell differentiation, whether metabolism might control T-cell fate by an epigenetic mechanism is unclear. Here, through the discovery and mechanistic characterization of a small molecule, (aminooxy)acetic acid, that reprograms the differentiation of T helper 17 (T17) cells towards induced regulatory T (iT) cells, we show that increased transamination, mainly catalysed by GOT1, leads to increased levels of 2-hydroxyglutarate in differentiating T17 cells.

View Article and Find Full Text PDF

Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration.

View Article and Find Full Text PDF

Reprogramming cell fates towards pluripotent stem cells and other cell types has revolutionized our understanding of cellular plasticity. During the last decade, transcription factors and microRNAs have become powerful reprogramming factors for modulating cell fates. Recently, many efforts are focused on reprogramming cell fates by non-viral and non-integrating chemical approaches.

View Article and Find Full Text PDF

The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature.

View Article and Find Full Text PDF

Cellular reprogramming using chemically defined conditions, without genetic manipulation, is a promising approach for generating clinically relevant cell types for regenerative medicine and drug discovery. However, small-molecule approaches for inducing lineage-specific stem cells from somatic cells across lineage boundaries have been challenging. Here, we report highly efficient reprogramming of mouse fibroblasts into induced neural stem cell-like cells (ciNSLCs) using a cocktail of nine components (M9).

View Article and Find Full Text PDF

Pancreatic beta cells are of great interest for biomedical research and regenerative medicine. Here we show the conversion of human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. On initial culture, converted definitive endodermal progenitor cells (cDE cells) are specified into posterior foregut-like progenitor cells (cPF cells).

View Article and Find Full Text PDF

Successful generation of induced pluripotent stem cells entails a major metabolic switch from mitochondrial oxidative phosphorylation to glycolysis during the reprogramming process. The mechanism of this metabolic reprogramming, however, remains elusive. Here, our results suggest that an Atg5-independent autophagic process mediates mitochondrial clearance, a characteristic event involved in the metabolic switch.

View Article and Find Full Text PDF

Induction of tissue-specific cell types via a conventional transdifferentiation strategy typically uses overexpression of the corresponding lineage-specific transcription factors. Alternatively, somatic cells can be temporarily activated via a common set of reprogramming factors into a transition state, which can then be directed into various cell types via soluble lineage-specific signals, without establishing a pluripotent state. Here, we provide protocols for the generation of cardiomyocytes, neural stem cells and hepatocytes from fibroblasts with such a cell activation (CA) and signaling-directed (SD; CASD) strategy.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) have the capability of revolutionizing research and therapy of liver diseases by providing a source of hepatocytes for autologous cell therapy and disease modelling. However, despite progress in advancing the differentiation of iPSCs into hepatocytes (iPSC-Heps) in vitro, cells that replicate the ability of human primary adult hepatocytes (aHeps) to proliferate extensively in vivo have not been reported. This deficiency has hampered efforts to recreate human liver diseases in mice, and has cast doubt on the potential of iPSC-Heps for liver cell therapy.

View Article and Find Full Text PDF

Pancreatic β cells are of great interest for the treatment of type 1 diabetes. A number of strategies already exist for the generation of β cells, but a general approach for reprogramming nonendodermal cells into β cells could provide an attractive alternative in a variety of contexts. Here, we describe a stepwise method in which pluripotency reprogramming factors were transiently expressed in fibroblasts in conjunction with a unique combination of soluble molecules to generate definitive endoderm-like cells that did not pass through a pluripotent state.

View Article and Find Full Text PDF