Publications by authors named "Saixian Zhang"

Optimizing feed efficiency through the feed conversion ratio (FCR) is paramount for economic viability and sustainability. In this study, we integrated RNA-seq, ATAC-seq, and genome-wide association study (GWAS) data to investigate key functional variants associated with feed efficiency in pigs. Identification of differentially expressed genes in the duodenal and muscle tissues of low- and high-FCR pigs revealed that pathways related to digestion of dietary carbohydrate are responsible for differences in feed efficiency between individuals.

View Article and Find Full Text PDF

Protein-mediated chromatin interactions can be revealed by coupling proximity-based ligation with chromatin immunoprecipitation. However, these techniques require complex experimental procedures and millions of cells per experiment, which limits their widespread application in life science research. Here, we develop a novel method, Hi-Tag, that identifies high-resolution, long-range chromatin interactions through transposase tagmentation and chromatin proximity ligation (with a phosphorothioate-modified linker).

View Article and Find Full Text PDF

Broad heterogeneity in pancreatic β-cell function and morphology has been widely reported. However, determining which components of this cellular heterogeneity serve a diabetes-relevant function remains challenging. Here, we integrate single-cell transcriptome, single-nuclei chromatin accessibility, and cell-type specific 3D genome profiles from human islets and identify Type II Diabetes (T2D)-associated β-cell heterogeneity at both transcriptomic and epigenomic levels.

View Article and Find Full Text PDF

Although major advances in genomics have initiated an exciting new era of research, a lack of information regarding cis-regulatory elements has limited the genetic improvement or manipulation of pigs as a meat source and biomedical model. Here, we systematically characterize cis-regulatory elements and their functions in 12 diverse tissues from four pig breeds by adopting similar strategies as the ENCODE and Roadmap Epigenomics projects, which include RNA-seq, ATAC-seq, and ChIP-seq. In total, we generate 199 datasets and identify more than 220,000 cis-regulatory elements in the pig genome.

View Article and Find Full Text PDF

In the process of pig genetic improvement, different commercial breeds have been bred for the same purpose, improving meat production. Most of the economic traits, such as growth and fertility, have been selected similarly despite the discrepant selection pressure, which is known as parallel selection. Here, 28 whole-genome sequencing data of Danish large white pigs with an approximately 25-fold depth each were generated, resulting in about 12 million high-quality SNPs for each individual.

View Article and Find Full Text PDF

Investigating the patterns of homozygosity, linkage disequilibrium, effective population size and inbreeding coefficients in livestock contributes to our understanding of the genetic diversity and evolutionary history. Here we used Illumina PorcineSNP50 Bead Chip to identify the runs of homozygosity (ROH) and estimate the linkage disequilibrium (LD) across the whole genome, and then predict the effective population size. In addition, we calculated the inbreeding coefficients based on ROH in 305 Piétrain pigs and compared its effect with the other two types of inbreeding coefficients obtained by different calculation methods.

View Article and Find Full Text PDF

DNA methylation is an important form of epigenetic regulation that can regulate the expression of genes and the development of tissues. Muscle satellite cells play an important role in skeletal muscle development and regeneration. Therefore, the DNA methylation status of genes in satellite cells is important in the regulation of the development of skeletal muscle.

View Article and Find Full Text PDF

Identifying the genetic basis of improvement in pigs contributes to our understanding of the role of artificial selection in shaping the genome. Here we employed the Cross Population Extended Haplotype Homozogysity (XPEHH) and the Wright's fixation index (F) methods to detect trait-specific selection signatures by making phenotypic gradient differential population pairs, and then attempted to map functional genes of six backfat thickness traits in Yorkshire pigs. The results indicate that a total of 283 and 466 single nucleotide polymorphisms (SNPs) were identified as trait-specific selection signatures using F and XPEHH, respectively.

View Article and Find Full Text PDF

Identifying genetic basis of domestication and improvement in livestock contributes to our understanding of the role of artificial selection in shaping the genome. Here we used whole-genome sequencing and the genotyping by sequencing approach to detect artificial selection signatures and identify the associated SNPs of two economic traits in Duroc pigs. A total of 38 candidate selection regions were detected by combining the fixation index and the Composite Likelihood Ratio methods.

View Article and Find Full Text PDF