Publications by authors named "Saison D"

Although monophenols are known to contribute to the flavour of many foods and beverages, little is known about their influence on beer flavour. Therefore, the contribution of 11 monophenols to the overall beer flavour was studied by determining their flavour thresholds. Large differences in sensitivity were observed between individual tasters.

View Article and Find Full Text PDF

Monophenols are widely spread compounds contributing to the flavour of many foods and beverages. They are most likely present in beer, but so far, little is known about their influence on beer flavour. To quantify these monophenols in beer, we optimised a headspace solid-phase microextraction method coupled to gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

The objective of this study was to develop a technique for analysing 14 flavour components, relevant for specialty malts. Therefore, a method was developed for the analysis of these components in dry ground malt using headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. A procedure was optimised for the optimal amount of sample, fibre selection, extraction temperature and extraction time.

View Article and Find Full Text PDF

An electronic tongue (ET) comprising 18 potentiometric chemical sensors was applied to the quantitative analysis of beer. Fifty Belgian and Dutch beers of different types were measured using the ET. The same samples were analyzed using conventional analytical techniques with respect to the main physicochemical parameters.

View Article and Find Full Text PDF

The flavor profile of beer is subject to changes during storage. Since, possibly, yeast has an influence on flavor stability, the aim of this study was to examine if there is a direct impact of brewing yeast on aged aroma. This was achieved by refermentation of aged beers.

View Article and Find Full Text PDF

The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St.

View Article and Find Full Text PDF

Headspace solid-phase microextraction (SPME) followed by gas chromatography and mass spectrometry was applied for quantification of 41 chemically diverse carbonyl compounds in beer. Therefore, in-solution derivatisation with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) combined with SPME was optimised for fibre selection, PFBHA concentration, extraction temperature and time and ionic strength. Afterwards, the method was calibrated and validated successfully and extraction efficiency was compared to sampling with on-fibre derivatisation.

View Article and Find Full Text PDF

In this study the decrease of 4-vinylguaiacol (4VG) during beer aging was investigated and the products that arise from it were identified. Two compounds, vanillin and apocynol, were identified in beer model solutions after forced aging and in naturally aged beers by GC-MS and HPLC-ECD analyses. Both account for up to 85% of the decrease of 4VG.

View Article and Find Full Text PDF

The release and evaporation of volatile compounds was studied during boiling of wort. The observed parameters were boiling time, boiling intensity, wort pH, and wort density. The effect of every parameter was discussed and approached chemically, with an eye on beer-aging processes.

View Article and Find Full Text PDF

Headspace solid-phase microextraction combined with gas chromatography and mass spectrometry was used for the quantification of 32 volatiles which represent the typical chemical reactions that can occur during beer ageing. Detection was accomplished by employing on-fibre derivatisation using o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and normal HS-SPME extraction. The procedures were optimised for SPME fibre selection, PFBHA loading temperature and time, extraction temperature and time, and effect of salt addition.

View Article and Find Full Text PDF

The aim of this study was to create a simple, solventless technique without derivatisation in order to analyze a broad range of volatiles in beer wort. A method was developed using headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. The procedure was optimised by selection of the appropriate fibre and optimisation of extraction temperature, extraction time, and salting-out.

View Article and Find Full Text PDF

The volatile fraction of wort components was studied during boiling. Not less than 118 volatile compounds were identified when unhopped pilsner wort was boiled and samples of wort and condensed vapors were analyzed with headspace SPME-GC/MS, of which 54 were confirmed with reference compounds. The wort samples contained 61 identifiable compounds, while the vapor condensate yielded 108 different compounds.

View Article and Find Full Text PDF

Aims: The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds.

Methods And Results: A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed.

View Article and Find Full Text PDF