Nanoparticles are like magic bullets and nanomaterials exhibit appealing properties. Their size and morphology can be switched by dopants for certain biological activities. Nanoparticles in combination with certain drugs enhance the antibiotic effects and may be valuable in combating bacterial resistance.
View Article and Find Full Text PDFThe current study elaborates the pharmacological potential of the methanolic extract and its fractions of the stems of based on thin-layer chromatography and column chromatography analyses, exploiting biological and phytochemical assays. The results suggest that bioassay-guided isolation and fractionation led to the accumulation of biologically active components in the most active fractions that resulted in the isolation of different compounds. Structural elucidation of the purified compounds was accomplished using spectroscopic one-dimensional (H, C) and two-dimensional NMR (heteronuclear multiple quantum coherence, heteronuclear multiple bond coherence, and correlation spectroscopy) and spectrometric (electron ionization mass spectrometry and high-resolution electron ionization mass spectrometry) techniques.
View Article and Find Full Text PDFObjective: To investigate the phytochemicals and in vitro antioxidant, antimicrobial and cytotoxic potential of Rumex dentatus (R. dentatus) leaf extracts.
Methods: The total phenolics and flavonoids content of R.
Background: Arisaema jacquemontii is traditionally used in treatment of different diseases. In this study, phytochemical, in vitro biological and chemo-preventive screening of A. jacquemontii was carried out to explore its pharmacological potential.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2019
Pristine- and strontium-doped AgO nanoparticles (NPs) were synthesized utilizing the symbolic co-precipitation method, in which sodium hydroxide was used as a precipitating agent. Various instrumentation methods were employed to get an inside view of the synthesized NPs. Powdered X-ray diffraction (PXRD) analysis revealed the existence of high crystallinity and small-sized NPs (an average diameter range of 35-48 nm).
View Article and Find Full Text PDFThe present study reports ecofriendly synthesis of CuO nanoparticles (NPs) using an extract of as a reducing agent. NPs structural and composition analysis are evaluated by X-rays diffraction (XRD), Fourier transform infrared, Energy dispersive spectroscopy, Scanning electron microscopy, Transmission electron microscopy, and Thermal analysis. The NPs have pure single phase monoclinic geometry with spherical structure and high stability toward heat and with average particle size of about 36.
View Article and Find Full Text PDFFragaria × ananassa leaves extracts prepared in different solvents were subject for antioxidative, cytotoxicity, protein kinase inhibition and antibacterial activities. The extracts showed varying activities depending upon solvent used for extraction. Combined effect of methanol and ethyl acetate showed maximum antioxidant and reducing power potential (207.
View Article and Find Full Text PDFAn effective approach used for the synthesis of silver nanoparticles (AgNPs) through green chemistry by using Kinnow peel extract as a reducing and capping agent is presented. Two different approaches, diluted and concentrated peel extracts, were used for the synthesis of AgNPs. Ultraviolet-visible spectroscopy exhibits characteristic absorption peaks at 425 and 400 nm for nanoparticles (NPs) synthesised by diluted and concentrated extracts, respectively.
View Article and Find Full Text PDFBackground: The role of plants for discovery of therapeutic potential accentuates the need to know their biological attributes. The present study aims to comprehend the biological attributes of Rhus punjabensis, an unexplored traditional medicinal plant.
Methods: Leaf and stem extracts of R.
Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV-vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis.
View Article and Find Full Text PDF