Mangroves adapt to periodical submergence and constitute resilient ecosystems in coastal environments. The question is whether they can sustain long submergence stress when sea level rises as a consequence of climate change. To address this, seedlings of two representative mangrove species that acclimate to low to mid tide (Avicennia marina) and mid to high tide (Kandelia obovata) conditions were treated with continual submergence for 7 days as extended hypoxia, or semi-diurnal cyclic submergence and reoxygenation for 7 days.
View Article and Find Full Text PDFCleavage and polyadenylation specificity factor (CPSF) is a protein complex that plays an essential biochemical role in mRNA 3'-end formation, including poly(A) signal recognition and cleavage at the poly(A) site. However, its biological functions at the organismal level are mostly unknown in multicellular eukaryotes. The study of plant CPSF73 has been hampered by the lethality of Arabidopsis (Arabidopsis thaliana) homozygous mutants of AtCPSF73-I and AtCPSF73-II.
View Article and Find Full Text PDFThe process of plastids developing into chloroplasts is critical for plants to survive. However, this process in woody plants is less understood. Kandelia obovata Sheue, Liu & Yong is a viviparous mangrove species; the seeds germinate on the maternal tree, and the hypocotyls continue to develop into mature propagules.
View Article and Find Full Text PDFSci Total Environ
February 2021
The Avicennia marina is a mangrove species widely distributed throughout the tropical and subtropical intertidal wetlands. To adapt to adverse tidal waves and hypoxia environments, A. marina has evolved a sophisticated root system to better secure itself on the muddy soil with downward-grown anchor roots and upward-grown aerial roots, called pneumatophores.
View Article and Find Full Text PDFMangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed.
View Article and Find Full Text PDF