The goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools.
View Article and Find Full Text PDFThe goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools.
View Article and Find Full Text PDFInvestigating basic biological mechanisms underlying human diseases relies on the availability of sufficient quantities of patient cells. As most primary somatic cells have a limited lifespan, obtaining sufficient material for biological studies has been a challenge. The development of induced pluripotent stem cell (iPSC) technology has been a game changer, especially in the field of rare genetic disorders.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) are regulated by MAPK kinases (MKKs), which are in turn regulated by MKK kinases (MKKKs). While a single MKKK can regulate several different MAPK family members, and several MKKKs can often activate the same MAPK, emerging evidence indicates a unique role for individual MKKKs in acting as signaling nodes to coordinately activate different subsets of MAPKs in response to specific cellular stimuli. Thus, while there is much apparent overlap in MAPK regulation by different MKKKs, each MKKK serves a specific purpose in regulation of unique cellular functions.
View Article and Find Full Text PDFAn embryonic stem (ES) cell/OP9 coculture system for the effective production of functional neutrophils is described. A 3-step differentiation strategy was developed that uses liquid culture, enabling reliable and abundant production of neutrophils at high purity without the need of sorting for isolation of mature neutrophils. Use of the OP9 stromal cell line significantly enhances the number, percentage, and duration of differentiated neutrophils produced from embryonic stem cells.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) cascades play essential roles in the transduction of extracellular signals to cytoplasmic and nuclear effectors. The MAPK kinase kinase MEKK2 is essential for activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 5 (ERK5). These pathways are important for expression of specific cytokine genes in mast cells following cross-linking of the high-affinity IgE receptor (FcepsilonRI).
View Article and Find Full Text PDFUnder appropriate culture conditions, ES cells will spontaneously differentiate and generate colonies known as embryoid bodies (EBs) that contain precursors of multiple lineages, including those of the hematopoietic system (1-7). Previous studies have demonstrated that the molecular events leading to hematopoietic commitment, as well as the kinetics of lineage development within the EBs, parallel that found in the normal mouse embryo (5). More recent studies (8-11) have supported these earlier findings and have provided evidence that hematopoietic development within EBs can be divided into the following distinct stages: hemangioblast, primitive and early definitive, and multilineage definitive.
View Article and Find Full Text PDF