Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device.
View Article and Find Full Text PDFNano-FeS is prone to agglomeration in the treatment of chromium-containing wastewater, and ultrasonic precipitation was used to synthesize nano-FeS to increase its dispersion. The optimization of the preparation method was carried out by single factor method (reaction temperature, Fe/S molar ratio and FeSO dropping flow rate) and response surface methodology. Dynamic experiments were constructed to investigate the long-term remediation effect and water column changes of nano-FeS and its solid particles.
View Article and Find Full Text PDFHeavy metals (HMs) and ammonia nitrogen (AN) leaching from electrolytic manganese residue (EMR) result in the contamination of agricultural soils and water bodies. Batch and column leaching tests were conducted to simulate the release of HMs and AN in EMR during precipitation, as well as their migration and transformation in agricultural soils. The results show that Mn, AN, Cd, Ni, and Zn present in the EMR had high acid soluble fraction (un-fixed AN) content, and the leachability of Mn and AN was significantly higher than that of other hazardous elements.
View Article and Find Full Text PDFTraditional neural networks used gradient descent methods to train the network structure, which cannot handle complex optimization problems. We proposed an improved grey wolf optimizer (SGWO) to explore a better network structure. GWO was improved by using circle population initialization, information interaction mechanism and adaptive position update to enhance the search performance of the algorithm.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2023
The immobilized lanthanum-modified biomass ash gel ball (CS-La-BA) was prepared with lanthanum chloride, biomass ash, and chitosan to remove phosphorus from water. CS-La-BA was characterized by several analytical techniques. SEM-EDS results showed that CS-La-BA has a well-developed pore structure and abundant adsorption sites.
View Article and Find Full Text PDFChromium has been considered as one of the most hazardous heavy metals because of its strong and persistent toxicity to the ecosystem and human beings. In this study, fly ash-loaded nano-FeS (nFeS-F) composites were constructed with fly ash as the carrier, and the performance and mechanism of the composites for the removal of Cr(VI) and total chromium from water were investigated. The composite was characterized by X-ray diffraction and transmission electron microscopy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2023
In this study, lignite-loaded nano-FeS (nFeS@Lignite) was successfully prepared by ultrasonic precipitation, and its potential for treating acid Cr(VI)-containing wastewater was explored. The results showed that the 40--80-nm rod-shaped nFeS was successfully loaded onto lignite particles, and the maximum adsorption capacity of Cr(VI) by nFeS@Lignite reached 33.08 mg∙g (reaction time = 120 min, pH = 4, temperature = 298.
View Article and Find Full Text PDFAiming at the problem that the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB) biological method is susceptible to pH, metal ions, sulfate and carbon source. Lignite immobilized SRB particles (SRB-LP) and Rhodopseudomonas spheroides (R. spheroides) activated lignite immobilized SRB particles (R-SRB-LP) were prepared using microbial immobilization technology with SRB, R.
View Article and Find Full Text PDFThe problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared immobilization techniques using Shandong Maifan stone as the experimental material. A single factor experiment was used to investigate the influences of the dosage of Maifan stone, the particle size of Maifan stone and the dosage of SRB on the pH improvement effect and the removal rates of SO , Fe and Mn.
View Article and Find Full Text PDFIn terms of the problem of severe pollution to the ecological environment caused by the acidic chrome-containing wastewater produced in the tanning, electroplating, metallurgy, printing and dyeing and other industries, based on the good adsorbability, reducibility and other properties of heavy metals such as Cr(vi) by lignite and nano FeS, the lignite-loaded nano FeS adsorbing material (nFeS-lignite) was prepared by ultrasonic precipitation method. NFeS-lignite and lignite were used as fillers to construct 1# and 2# dynamic columns to carry out the dynamic treatment experiment of acidic chrome-containing wastewater. And nFeS-lignite and lignite were characterized by XRD, SEM and EDS to explore the regularity, long-acting properties and removal mechanism of acidic chrome-containing wastewater treated by NFeS-lignite and lignite.
View Article and Find Full Text PDFThe study aims to solve the problems of limited capacity and difficult recovery of lignite to adsort Cu, Zn and Pb in acid mine wastewater (AMD). Magnetically modified lignite (MML) was prepared by the chemical co-precipitation method. Static beaker experiments and dynamic continuous column experiments were set up to explore the adsorption properties of Cu, Zn and Pb by lignite and MML.
View Article and Find Full Text PDFThe problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO42- and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42- by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. The effects of Maifan stones containing SRB on mitigating AMD were investigated by constructing Dynamic Column 1 with Maifan stone-sulfate-reducing bacterium-immobilized particles and by constructing Dynamic Column 2 with SRB mixed with Maifan stones.
View Article and Find Full Text PDF