Publications by authors named "Saintamand A"

Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind-wave-current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents.

View Article and Find Full Text PDF

Introduction: Follicular Lymphoma (FL) results from the malignant transformation of germinal center (GC) B cells. FL B cells display recurrent and diverse genetic alterations, some of them favoring their direct interaction with their cell microenvironment, including follicular helper T cells (Tfh). Although FL-Tfh key role is well-documented, the impact of their regulatory counterpart, the follicular regulatory T cell (Tfr) compartment, is still sparse.

View Article and Find Full Text PDF

Estimating connectivity between coral reefs is essential to inform reef conservation and restoration. Given the vastness of coral reef ecosystems, connectivity can only be simulated with biophysical models whose spatial resolution is often coarser than the reef scale. Here, we assess the impact of biophysical models resolution on connectivity estimates by comparing the outputs of five different setups of the same model with resolutions ranging from 250 m to 4 km.

View Article and Find Full Text PDF

Upregulated expression of the anti-apoptotic oncogene is a common feature of various types of B-cell malignancies, from lymphoma to leukemia or myeloma. It is currently unclear how the various patterns of deregulation observed in pathology eventually impact the phenotype of malignant B cells and their microenvironment. Follicular lymphoma (FL) is the most common non-Hodgkin lymphoma arising from malignant germinal center (GC) B-cells, and its major hallmark is the t(14:18) translocation occurring in B cell progenitors and placing the gene under the control of the immunoglobulin heavy chain locus regulatory region (IgH 3'RR), thus exposing it to constitutive expression and hypermutation.

View Article and Find Full Text PDF

A major coal mine project in Queensland, Australia, is currently under review. It is planned to be located about 10 km away from the Great Barrier Reef World Heritage Area (GBRWHA). Sediment dispersal patterns and their impact on marine ecosystems have not been properly assessed yet.

View Article and Find Full Text PDF

The diagnostic approach of monoclonal gammopathy of renal significance is based on the detection of a monoclonal immunoglobulin in the blood and urine, and the identification of the underlying clone through bone marrow and/or peripheral blood cytologic and flow cytometry analysis. However, the monoclonal component and its corresponding clone may be undetectable using these routine techniques. Since clone identification is the cornerstone for guiding therapy and assessing disease response, more sensitive methods are required.

View Article and Find Full Text PDF
Article Synopsis
  • MYD88 activating mutations are commonly found in Waldenström macroglobulinemia (WM) and aggressive B-cell lymphomas, indicating their role in these diseases.
  • A new mouse model was created to study MYD88 activation, showing that it leads to increased IgM levels, spleen enlargement, and a progression from polyclonal to monoclonal immunoglobulins as the mice age.
  • Transcriptomic analysis of the Myd88 mice revealed a link between MYD88 activation, tumor proliferation, and features similar to those found in WM, suggesting a shared biological mechanism.
View Article and Find Full Text PDF

Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome is a rare multisystem disease resulting from an underlying plasma cell (PC) dyscrasia. The pathophysiology of the disease remains unclear, but the role of the monoclonal immunoglobulin (Ig) light chain (LC) is strongly suspected because of the highly restrictive usage of 2 λ variable (V) domains (IGLV1-40 and IGLV1-44) and the general improvement of clinical manifestations after PC clone-targeted treatment. However, the diagnostic value of Ig LC sequencing, especially in the case of incomplete forms of the disease, remains to be determined.

View Article and Find Full Text PDF

The immunoglobulin heavy chain (IgH) 3' regulatory region (3'RR) superenhancer controls B2 B-cell IgH transcription and cell fate at the mature stage but not early repertoire diversity. B1 B cells represent a small percentage of total B cells differing from B2 B cells by several points such as precursors, development, functions, and regulation. B1 B cells act at the steady state to maintain homeostasis in the organism and during the earliest phases of an immune response, setting them at the interface between innate and acquired immunity.

View Article and Find Full Text PDF

The four transcriptional enhancers located in the 3' regulatory region (3'RR) of the IgH locus control the late phases of B-cell maturation, namely IgH locus transcription, somatic hypermutation and class switch recombination. Doctor Jekyll by nature, the 3'RR acts as Mister Hyde in case of oncogenic translocation at the IgH locus taking under its transcriptional control the translocated oncogene. The aim of this review is to show this duality on the basis of the latest scientific advances in the structure and function of the 3'RR and to hIghlight the targeting of the 3'RR as a potential therapeutic approach in mature B-cell lymphomas.

View Article and Find Full Text PDF

Enhancer and super-enhancers are master regulators of cell fate. While they act at long-distances on adjacent genes, it is unclear whether they also act on one another. The immunoglobulin heavy chain (IgH) locus is unique in carrying two super-enhancers at both ends of the constant gene cluster: the 5'E super-enhancer promotes VDJ recombination during the earliest steps of B-cell ontogeny while the 3' regulatory region (3'RR) is essential for late differentiation.

View Article and Find Full Text PDF

Functional B-cells are essential for the formation of oil granulomas. The IgH 3' regulatory region (3'RR) activates important check-points during B-cell maturation. We investigated if 3'RR-deficient B-cells remain efficient to develop oil granulomas in response to pristine.

View Article and Find Full Text PDF

Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3' regulatory region (3'RR) are master control elements of transcription.

View Article and Find Full Text PDF