Background: The University of Wisconsin Institute for Clinical and Translational Research hub supports multiple pilot award programs that engage cross-disciplinary Translational Teams. To support those teams, our Team Science group aims to offer a learning experience that is accessible, active, and actionable. We identified Collaboration Planning as a high-impact intervention to stimulate team-building activities that provide Translational Team members with the skills to lead and participate in high-impact teams.
View Article and Find Full Text PDFThe relationship between pesticides and pollinators, while attracting no shortage of attention from scientists, regulators, and the public, has proven resistant to scientific synthesis and fractious in matters of policy and public opinion. This is in part because the issue has been approached in a compartmentalized and intradisciplinary way, such that evaluations of organismal pesticide effects remain largely disjoint from their upstream drivers and downstream consequences. Here, we present a socioecological framework designed to synthesize the pesticide-pollinator system and inform future scholarship and action.
View Article and Find Full Text PDFWe develop a transdisciplinary deliberative model that moves beyond traditional scientific collaborations to include nonscientists in designing complexity-oriented research. We use the case of declining honey bee health as an exemplar of complex real-world problems requiring cross-disciplinary intervention. Honey bees are important pollinators of the fruits and vegetables we eat.
View Article and Find Full Text PDFThe social and nutritional environments during early development have the potential to affect offspring traits, but the mechanisms and molecular underpinnings of these effects remain elusive. We used paper wasps to dissect how maternally controlled factors (vibrational signals and nourishment) interact to induce different caste developmental trajectories in female offspring, leading to worker or reproductive (gyne) traits. We established a set of caste phenotype biomarkers in females, finding that gyne-destined individuals had high expression of three caste-related genes hypothesized to have roles in diapause and mitochondrial metabolism.
View Article and Find Full Text PDFI examine recent policymaking efforts in the United States (US) that seek to improve how risks posed by pesticides to insect pollinators are assessed and managed. Utilizing the case of ongoing honey bee die-offs, I argue for a context-sensitive policy framework. From a scientific perspective, this entails not ignoring the uncertain knowledge emerging from laboratory and field studies regarding the indirect effects of low levels of certain insecticides in combination with other factors.
View Article and Find Full Text PDFAmidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies.
View Article and Find Full Text PDFSpecialization into reproductive and non-reproductive castes is one of the defining traits of eusocial insects. Knowledge of the proximal causes of caste differentiation is therefore central to achieving an understanding of the evolution of eusociality. Castes are an example of a polyphenism, multiple, discrete phenotypes arising from a single genotype in response to differing environmental conditions.
View Article and Find Full Text PDFUnderstanding the proximate mechanisms of caste development in eusocial taxa can reveal how social species evolved from solitary ancestors. In Polistes wasps, the current paradigm holds that differential amounts of nutrition during the larval stage cause the divergence of worker and gyne (potential queen) castes. But nutrition level alone cannot explain how the first few females to be produced in a colony develop rapidly yet have small body sizes and worker phenotypes.
View Article and Find Full Text PDFExposure of mammalian cells to UV radiation was proposed to stimulate the transcription factor NF-kappa B by a unique mechanism. Typically, rapid and strong inducers of NF-kappa B, such as tumor necrosis factor alpha (TNF-alpha) and bacterial lipopolysaccharide (LPS), lead to rapid phosphorylation and proteasomal degradation of its inhibitory protein, I kappa B alpha. In contrast, UV, a relatively slower and weaker inducer of NF-kappa B, was suggested not to require phosphorylation of I kappa B alpha for its targeted degradation by the proteasome.
View Article and Find Full Text PDF