Publications by authors named "Sainan Ma"

Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover.

View Article and Find Full Text PDF
Article Synopsis
  • Depression is connected to an imbalance in the autonomic nervous system, and the effects of sleep deprivation and vagus nerve stimulation on mental health are not completely understood.
  • A study found shorter sleep duration linked to higher depression levels and lower heart rate variability (HRV), while a mouse model showed that vagus nerve stimulation improved the negative effects of sleep deprivation.
  • The findings suggest that using vagus nerve stimulation could help prevent depression in people with inadequate sleep by improving autonomic nervous system function and overall emotional well-being.
View Article and Find Full Text PDF

The application of Si-based anodes in lithium-ion batteries (LIBs) has garnered significant attention due to their high theoretical specific capacity yet is still challenged by the substantial volume expansion of silicon particles during the lithiation process, resulting in the instability of the electrode-electrolyte interphase and deteriorative battery performance. Herein, an ortho(trimethylsilyl)oxybenzene electrolyte additive, 1,2-bis((trimethylsilyl)oxy) benzene (referred to as BTMSB), has been investigated as a bifunctional electrolyte additive for Si-based LIBs. The BTMSB can form a uniform and robust LiF-rich solid electrolyte interphase (SEI) on the surface of Si-based material particles, adapting the huge volume expansion of the Si-based electrode and facilitating lithium-ion transport.

View Article and Find Full Text PDF
Article Synopsis
  • The next-gen biosensing systems are evolving to be smarter, smaller, and more portable due to advancements in AI and IoT.
  • Researchers are focusing on self-powered technologies to replace bulky traditional power sources, making wearable biosensors more efficient.
  • This review highlights recent developments in energy harvesting methods for biosensors while also addressing future challenges and research priorities.
View Article and Find Full Text PDF

Introduction: To solve the problem of control failure caused by system failure of deep-water salvage equipment under severe sea conditions, an event-triggered fault-tolerant control method (PEFC) based on proportional logarithmic projection analysis is proposed innovatively.

Methods: First, taking the claw-type underwater salvage robot as the research object, amore universal thruster fault model was established to describe the fault state of equipment failure, interruption, stuck, and poor contact. Second, the controller was designed by the proportional logarithmic projection analytical method.

View Article and Find Full Text PDF

To keep the global search capability and robustness for unmanned surface vessel (USV) path planning, an improved differential evolution particle swarm optimization algorithm (DePSO) is proposed in this paper. In the optimization process, approach to optimal value in particle swarm optimization algorithm (PSO) and mutation, hybridization, selection operation in differential evolution algorithm (DE) are combined, and the mutation factor is self-adjusted. First, the particle population is initialized and the optimization objective is determined, the individual and global optimal values are updated.

View Article and Find Full Text PDF

Porous hydrogels have been intensively used in energy conversion and storage, catalysis, separation, and biomedical applications. Controlling the porosity of these materials over multiple length scales brings about new functionalities and higher efficiency but is a challenge using the current manufacturing methods. Herein we developed a post-programming method to lock the lyophilized pores of 3D printed hydrogels as an experimental platform towards hierarchically structured pores.

View Article and Find Full Text PDF

Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. <i>Trifolium repens</i> (<i>T.

View Article and Find Full Text PDF

The microstructure of polymer materials is an important bridge between their molecular structure and macroproperties, which is of great significance to be effectively identified. With the increasing refinement of polymer material design, the microstructure of different polymer materials gradually converges, which is difficult to distinguish. In this study, the machine learning method is applied to recognize the microstructure.

View Article and Find Full Text PDF

is the most widely cultivated perennial legume forage in temperate region around the world. It has rich nutritional value and good palatability, seasonal complementarity with grasses, and can improve the feed intake and digestibility of livestock. However, flowering time and inflorescence development directly affects the quality and yield of , as well as seed production.

View Article and Find Full Text PDF

() can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of exposed to a high-level CdCl by investigating the physiological and transcriptomic analyses.

View Article and Find Full Text PDF

The R2R3-MYB family is one of largest transcription factor families in plants playing significant roles in regulating anthocyanin and proanthocyanidin biosynthesis. Proanthocyanidins are one of major objectives to improve the quality of white clover (Trifolium repens L.), which have a beneficial effect on ruminant to prevent the lethal pasture bloat.

View Article and Find Full Text PDF

White clover is an important temperate legume forage with high nutrition. In the present study, 448 worldwide accessions were evaluated for the genetic variation and polymorphisms using 22 simple sequence repeat (SSR) markers. All the markers were highly informative, a total of 341 scored bands were amplified, out of which 337 (98.

View Article and Find Full Text PDF

Background: Even though many studies have proven the risk factors for cancer in children, studies focusing exclusively on second children are absent. This study is designed to examine the association between maternal exposure during pregnancy and the risk of developing solid tumors (STs) in second children.

Methods: This retrospective matched case-control study included 80 s children with STs and 160 s children without STs matched in terms of birth weight, gestational age, pregnancy body mass index (BMI), and residence from a medical center.

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is an important perennial legume forage with high productivity and quality. To strengthen the basic research on the genetic characteristics, fingerprint identification and adaptability of white clover germplasm resources, Simple sequence repeat (SSR) molecular markers were applied to 10 white clover cultivars to assess the genetic diversity and related lines of white clover at the molecular level in order to lay a theoretical foundation for the selection of high-quality seeds and cultivars of white clover.

View Article and Find Full Text PDF

The Maillard reaction involves a series of complex reactions; fluorescent compounds have been considered as vital intermediate products of the reaction. In this article, carbon dots (CDs) based on the Maillard reaction (MR-CDs) were prepared with L-tryptophan and D-glucose, and they had excellent photoluminescence stability. MR-CDs showed stable pH-dependence behavior and exhibited an excellent linear response to pH in the range of 4.

View Article and Find Full Text PDF

The estimation of yeast viability with B- and N-doped carbon dots (BN-CDs) was investigated in this paper. BN-CDs with a fluorescent quantum yield of 65.47% were prepared by a one-step hydrothermal method.

View Article and Find Full Text PDF

Before we have reported lamprey PHB2 could enhance the cellular oxidative-stressed tolerance, here the aim was to explore its mechanisms. We used flow cytometry analysis to identify a Lampetra morii homologue of PHB2 (Lm-PHB2) that could significantly decrease the levels of ROS generation in HEK293T cells. According to confocal microscopy observations, Lm-PHB2 contributed to maintain the mitochondrial morphology of HEK293T cells, and then both cellular nuclear location and translocation from the nucleus to mitochondria of Lm-PHB2 were also examined in HEK293T cells under oxidative stress.

View Article and Find Full Text PDF

Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis.

View Article and Find Full Text PDF

Valence engineering has been proved an effective approach to modify the electronic property of a catalyst and boost its oxygen evolution reaction (OER) activity, while the limited number of elements restricts the structural diversity and the active sites. Also, the catalyst performance and stability are greatly limited by cationic dissolution, ripening, or crystal migration in a catalytic system. Here we employed a widely used technique to fabricate heteroepitaxial pyrite selenide through dual-cation substitution and a boron dopant to achieve better activity and stability.

View Article and Find Full Text PDF

The improvement of activity of electrocatalysts lies in the increment of the density of active sites or the enhancement of intrinsic activity of each active site. A common strategy to realize dual active sites is the use of bimetal compound catalysts, where each metal atom contributes one active site. In this work, a new concept is presented to realize dual active sites with tunable electron densities in monometal compound catalysts.

View Article and Find Full Text PDF

Indium selenide (InSe) has attracted tremendous attention due to its favorable electronic features, broad tunable bandgap, high stability and other attractive properties. However, its further applications for nonlinear optics have not yet been fully explored. In this work, we demonstrate that few-layer α-InSe nanosheets exhibit strong saturable absorption properties over a wide wavelength range covering 800, 1064 and 1550 nm.

View Article and Find Full Text PDF

Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management. An extended Shockley-Queisser model is used to identify fundamental loss mechanisms and link the losses to the optics of solar cells. Photon management is used to minimize losses and maximize the energy conversion efficiency.

View Article and Find Full Text PDF

Two-dimensional (2D) layered Platinum Ditelluride (PtTe), a novel candidate of group 10 transition-metal dichalcogenides (TMDs), which provides enormous potential for pulsed laser applications due to its highly stable and strong nonlinear optical absorption (NOA) properties. PtTe saturable absorber (SA) is successfully fabricated with firstly demonstrated the passively Q-switched laser operation within a Yb-doped fiber laser cavity at 1066 nm. Few layered PtTe is produced by uncomplicated and cost-efficient ultrasonic liquid exfoliation and follow by incorporating into polyvinyl alcohol (PVA) polymer to form a PtTe-PVA composite thin film saturable absorber.

View Article and Find Full Text PDF

In this work, we examined the performance of 2D titanate nanosheets for dye adsorption. Their adsorption capacity for methylene blue (MB) is up to 3937 mg g, which is more than 10 times higher than active carbon and occupies the highest place among all the reports.

View Article and Find Full Text PDF