This study investigates the fabrication process of biocomposites and their resultant mechanical and thermal properties, essential for evaluating the performance of finished products. Polypropylene random copolymer (PPRC) was employed as the matrix phase, while rice husk (RH), a biowaste filler, was incorporated in varying concentrations. The rice husk fiber was treated with alkali (RHT) to enhance its lignocellulosic content.
View Article and Find Full Text PDFThis study aims to develop a benign and commercially viable method for the degradation of monoethanolamine (MEA) in the aqueous phase an ultraviolet/hydrogen peroxide (UV/HO) advanced oxidation process (AOP). The current investigation is novel in terms of detailed kinetic analysis and degradation mechanisms; the impact of pH and UV light intensity on MEA degradation was thoroughly examined. pH 9 was identified as the optimal condition, achieving a degradation efficiency of 76.
View Article and Find Full Text PDFThis study was based on the experimental performance evaluation of a wood polymer composite (WPC) that was synthesized by incorporating untreated and treated rice husk (RH) fibers into a polypropylene random copolymer matrix. The submicron-scale RH fibers were alkali-treated to modify the surface and introduce new functional groups in the WPC. A compatibilizer (maleic anhydride) and a thermos-mechanical properties modifier (polypropylene grafted with 30 % glass fiber) were used in the WPC.
View Article and Find Full Text PDFNanoindentation is widely used to investigate the surface-mechanical properties of biocomposites. In this study, polypropylene random copolymer (PPRC) and biowaste rice husk (BRH) were used as the main raw materials, and glass-fiber-reinforced polypropylene and talc were also used with BRH to enhance the mechanical characterization of the biocomposites. The interfacial bonding between the polymer and the rice husk was increased by treating them with maleic anhydride and NaOH, respectively.
View Article and Find Full Text PDFIn this work, the effects of chemical pretreatment and different fiber loadings on mechanical properties of the composites at the sub-micron scale were studied through nanoindentation. The composites were prepared by incorporating choline chloride (ChCl) pretreated rice husk waste (RHW) in low-density polyethylene (LDPE) using melt processing, followed by a thermal press technique. Nanoindentation experiments with quasi continuous stiffness mode (QCSM) were performed on the surface of produced composites with varying content of pretreated RHW (i.
View Article and Find Full Text PDFNano-indentation, a depth sensing technique, is a useful and exciting tool to investigate the surface mechanical properties of a wide range of materials, particularly polymers. Knowledge of the influence of experimental conditions employed during nano-indentation on the resultant nano-mechanical response is very important for the successful design of engineering components with appropriate surface properties. In this work, nano-indentation experiments were carried out by selecting various values of frequency, amplitude, contact depth, strain rate, holding time, and peak load.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2019
Bigels are interesting semisolid formulations with better properties for different applications such as cosmetics and pharmaceutical systems. Due to the mixing of two phases of different nature (polar and apolar), bigels possess some interesting features like ability to deliver hydrophilic and hydrophobic drugs, better spreadability and water washability, improved permeability of drugs, enhanced hydration of stratum corneum and ability to manipulate the drug release rate. The main objective of this review article is to provide a thorough insight into the important characteristics of bigels together with the discussion on modelling of bigel systems to relate their properties with individual constituents and different parameters.
View Article and Find Full Text PDF