Publications by authors named "Saima Umbreen"

Phytophthora species can infect hundreds of different plants, including many important crops, causing a number of agriculturally relevant diseases. A key feature of attempted pathogen infection is the rapid production of the redox active molecule nitric oxide (NO). However, the potential role(s) of NO in plant resistance against Phytophthora is relatively unexplored.

View Article and Find Full Text PDF

Nitric oxide (NO) regulates the deployment of a phalanx of immune responses, chief among which is the activation of a constellation of defence-related genes. However, the underlying molecular mechanisms remain largely unknown. The Arabidopsis thaliana zinc finger transcription factor (ZF-TF), S-nitrosothiol (SNO) Regulated 1 (SRG1), is a central target of NO bioactivity during plant immunity.

View Article and Find Full Text PDF

S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1).

View Article and Find Full Text PDF

Nitric oxide (NO) is perfectly suited for the role of a redox signalling molecule. A key route for NO bioactivity occurs via protein S-nitrosation, and involves the addition of a NO moiety to a protein cysteine (Cys) thiol (-SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants that are linked to development, environmental responses and immune function.

View Article and Find Full Text PDF

As a gaseous biological signaling molecule, nitric oxide (NO) regulates many physiological processes in plants. Over the last decades, this low molecular weight compound has been identified as a key signaling molecule to regulate plant stress responses, and also plays an important role in plant development. However, elucidation of the molecular mechanisms for NO in leaf development has so far been limited due to a lack of mutant resources.

View Article and Find Full Text PDF

Nitric oxide (NO), more benign than its more reactive and damaging related molecules, reactive oxygen species (ROS), is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity is through S-nitrosation, the addition of an NO moiety to a protein Cys thiol (-SH). This redox-based, post-translational modification (PTM) can modify protein function analogous to more well established PTMs such as phosphorylation, for example by modulating enzyme activity, localization, or protein-protein interactions.

View Article and Find Full Text PDF

Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, we describe a novel high throughput enzyme-coupled assay for determining methyltransferase activites.

View Article and Find Full Text PDF

Nitric oxide (NO) orchestrates a plethora of incongruent plant immune responses, including the reprograming of global gene expression. However, the cognate molecular mechanisms remain largely unknown. Here we show a zinc finger transcription factor (ZF-TF), SRG1, is a central target of NO bioactivity during plant immunity, where it functions as a positive regulator.

View Article and Find Full Text PDF

Reactive nitrogen species (RNS) and their cognate redox signalling networks pervade almost all facets of plant growth, development, immunity, and environmental interactions. The emerging evidence implies that specificity in redox signalling is achieved by a multilayered molecular framework. This encompasses the production of redox cues in the locale of the given protein target and protein tertiary structures that convey the appropriate local chemical environment to support redox-based, post-translational modifications (PTMs).

View Article and Find Full Text PDF