Background: Carriers of cancer predisposing variants are at an increased risk of developing subsequent malignant neoplasms among those who have survived childhood cancer. We aimed to investigate whether cancer predisposing variants contribute to the risk of subsequent malignant neoplasm-related late mortality (5 years or more after diagnosis).
Methods: In this analysis, data were included from two retrospective cohort studies, St Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS), with prospective follow-up of patients who were alive for at least 5 years after diagnosis with childhood cancer (ie, long-term childhood cancer survivors) with corresponding germline whole genome or whole exome sequencing data.
Despite the recent surge of viral metagenomic studies, recovering complete virus/phage genomes from metagenomic data is still extremely difficult and most viral contigs generated from de novo assembly programs are highly fragmented, posing serious challenges to downstream analysis and inference. In this study, we develop FastViromeExplorer (FVE)-novel, a computational pipeline for reconstructing complete or near-complete viral draft genomes from metagenomic data. The FVE-novel deploys FVE to efficiently map metagenomic reads to viral reference genomes, performs de novo assembly of the mapped reads to generate contigs, and extends the contigs through iterative assembly to produce final viral scaffolds.
View Article and Find Full Text PDFSequencing cases without matched healthy controls hinders prioritization of germline disease-predisposition genes. To circumvent this problem, genotype summary counts from public data sets can serve as controls. However, systematic inflation and false positives can arise if confounding factors are not controlled.
View Article and Find Full Text PDFDiverse bacterial and archaeal lineages drive biogeochemical cycles in the global ocean, but the evolutionary processes that have shaped their genomic properties and physiological capabilities remain obscure. Here we track the genome evolution of the globally abundant marine bacterial phylum across its diversification into modern marine environments and demonstrate that extant lineages are partitioned between epipelagic and mesopelagic habitats. Moreover, we show that these habitat preferences are associated with fundamental differences in genomic organization, cellular bioenergetics, and metabolic modalities.
View Article and Find Full Text PDFWith the increase in the availability of metagenomic data generated by next generation sequencing, there is an urgent need for fast and accurate tools for identifying viruses in host-associated and environmental samples. In this paper, we developed a stand-alone pipeline called FastViromeExplorer for the detection and abundance quantification of viruses and phages in large metagenomic datasets by performing rapid searches of virus and phage sequence databases. Both simulated and real data from human microbiome and ocean environmental samples are used to validate FastViromeExplorer as a reliable tool to quickly and accurately identify viruses and their abundances in large datasets.
View Article and Find Full Text PDF