Publications by authors named "Saima Aijaz"

Infections by enteropathogenic Escherichia coli (EPEC) cause acute diarrheal disease in infants accounting for severe morbidity and mortality. One of the underlying causes of the disease is the breakdown of the intestinal barrier maintained by the tight junctions (TJs). EPEC uses a type 3 secretion system to translocate more than 20 effectors into infected cells, which disrupt several functions of the host cells.

View Article and Find Full Text PDF

Background: Enteropathogenic E. coli (EPEC) causes acute infantile diarrhea accounting for significant morbidity and mortality in developing countries. EPEC uses a type three secretion system to translocate more than twenty effectors into the host intestinal cells.

View Article and Find Full Text PDF

Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules.

View Article and Find Full Text PDF

Enteropathogenic E. coli (EPEC) cause diarrhea and are the major cause of mortality in developing countries. EPEC use a type III secretion system to deliver effector proteins into the host epithelial cells.

View Article and Find Full Text PDF

Enteropathogenic E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea.

View Article and Find Full Text PDF

Epithelial tight junctions recruit different types of signalling proteins that regulate cell proliferation and differentiation. Little is known about how such proteins interact functionally and biochemically with each other. Here, we focus on the Y-box transcription factor ZONAB (zonula occludens 1-associated nucleic-acid-binding protein)/DbpA (DNA-binding protein A) and the Rho GTPase activator guanine nucleotide exchange factor (GEF)-H1/Lbc's first cousin, which are two tight-junction-associated signalling proteins that regulate proliferation.

View Article and Find Full Text PDF

Background: Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation.

View Article and Find Full Text PDF

Tight junctions are the most apical component of the epithelial junctional complex and are crucial for the formation and functioning of epithelial and endothelial barriers. They regulate selective diffusion of ions and solutes along the paracellular pathway and restrict apical/basolateral intramembrane diffusion of lipids. Research over the past years provided much insight into the molecular composition of tight junctions, and we are starting to understand the mechanisms that permit selective paracellular diffusion.

View Article and Find Full Text PDF

Tight junctions are important for the permeability properties of epithelial and endothelial barriers as they restrict diffusion along the paracellular space. Recent observations have revealed that tight junctions also function in the regulation of epithelial proliferation and differentiation. They harbour evolutionarily conserved protein complexes that regulate polarisation and junction assembly.

View Article and Find Full Text PDF

SIX3 and SIX6 are transcription factors expressed during early stages of eye development. Limited expression data for SIX3 and SIX6 are available in the literature but, to date, there are no reports of the relative levels of expression of these genes throughout the human body and in adult tissues in particular. In this paper, we report extensive real-time quantitative PCR analyses of SIX3 and SIX6 expression in many different tissues of the adult human body, including ocular tissues, and a comparison of expression data with that of many other genes to identify similarity in expression.

View Article and Find Full Text PDF

The activity of Rho GTPases is carefully timed to control epithelial proliferation and differentiation. RhoA is downregulated when epithelial cells reach confluence, resulting in inhibition of signaling pathways that stimulate proliferation. Here we show that GEF-H1/Lfc, a guanine nucleotide exchange factor for RhoA, directly interacts with cingulin, a junctional adaptor.

View Article and Find Full Text PDF

Purpose: To investigate whether 173 patients with microphthalmia, anophthalmia, and coloboma have mutations in the eye-development gene SIX6.

Methods: The two exons of the SIX6 gene were amplified by PCR from patients' genomic DNA and directly sequenced to search for mutations. The PCR products of 75 patients were also analyzed by denaturing high-performance liquid chromatography (DHPLC).

View Article and Find Full Text PDF

Purpose: Autosomal dominant optic atrophy (ADOA) is characterized by primary degeneration of retinal ganglion cells and atrophy of the optic nerve. The OPA1 gene encodes a 960-amino-acid protein. In the current study the temporal and spatial localization of OPA1 were examined in developing and adult murine ocular tissues and the adult human eye.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmjj3g86d4sqjbd1jck3rhs0ddfdos9ag): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once