Publications by authors named "Sailendra Nichenametla"

Protein folding in the endoplasmic reticulum (ER) requires a high ratio of oxidized to reduced glutathione (GSSG/rGSH). Since the GSSG/rGSH depends on total glutathione (tGSH = GSSG + rGSH) levels, we hypothesized that limiting GSH biosynthesis will ameliorate protein misfolding by enhancing the ER oxidative milieu. As a proof-of-concept, we used DL-buthionine-(S,R)-sulfoximine (BSO) to inhibit GSH biosynthesis in Akita mice, which are prone to proinsulin misfolding.

View Article and Find Full Text PDF

Background: Cross-sectional studies have suggested that consumption of sulfur amino acids (SAAs), including methionine and cysteine, is associated with a higher risk of type 2 diabetes (T2D) in humans and with T2D-related biomarkers in animals. But whether higher long-term SAA intake increases the risk of T2D in humans remains unknown.

Objectives: We aimed to investigate the association between long-term dietary SAA intake and risk of T2D.

View Article and Find Full Text PDF

Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR).

View Article and Find Full Text PDF

Diet can affect health and longevity by altering the gut microbiome profile. Sulfur amino acid restriction (SAAR), like caloric restriction, extends lifespan. But, its effect on the gut microbiome profile and functional significance of such effects are understudied.

View Article and Find Full Text PDF

Trade-offs in life-history traits are clinically and mechanistically important. Sulfur amino acid restriction (SAAR) extends lifespan. But whether this benefit comes at the cost of other traits including stress resistance and growth is unclear.

View Article and Find Full Text PDF

Objective: Identifying novel approaches to combat obesity is important to improve health span. It was hypothesized that methionine restriction (MR) will induce weight loss in obese mice by reducing adipose tissue mass caused by increased energy expenditure and reprogramming of adipose tissue homeostasis. The roles of adiponectin (ADIPOQ) and fibroblast growth factor 21 (FGF21) during weight loss in MR mice were also tested.

View Article and Find Full Text PDF
Article Synopsis
  • Nutrition plays a significant role in health and can be used to treat metabolic diseases; however, its impact on cancer outcomes, influenced by metabolic pathways, is still not fully understood.
  • Research shows that restricting the essential amino acid methionine can affect one-carbon metabolism, which is targeted in cancer treatments like chemotherapy and radiation.
  • In both mouse models and a human study, methionine restriction demonstrated positive effects on cancer metabolism and outcomes, suggesting that dietary interventions can influence tumor-cell metabolism and enhance cancer treatment effectiveness.
View Article and Find Full Text PDF

Nutrition and metabolism are known to influence chromatin biology and epigenetics through post-translational modifications, yet how this interaction influences genomic architecture and connects to gene expression is unknown. Here we consider, as a model, the metabolically-driven dynamics of H3K4me3, a histone methylation mark that is known to encode information about active transcription, cell identity, and tumor suppression. We analyze the genome-wide changes in H3K4me3 and gene expression in response to alterations in methionine availability in both normal mouse physiology and human cancer cells.

View Article and Find Full Text PDF

The mechanisms underlying life span extension by sulfur amino acid restriction (SAAR) are unclear. Cysteine and methionine are essential for the biosynthesis of proteins and glutathione (GSH), a major redox buffer in the endoplasmic reticulum (ER). We hypothesized that SAAR alters protein synthesis by modulating the redox milieu.

View Article and Find Full Text PDF

Despite well-documented evidence for lifespan extension by methionine restriction (MR), underlying mechanisms remain unknown. As methionine can alter S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the substrate and product of DNA methyltransferase-1 (DNMT1), we hypothesized that MR diet alters DNA methylation. Young (8-week-old) and adult (1-year-old) male C57BL/6J mice were fed diets with different levels of methionine (0.

View Article and Find Full Text PDF

Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group.

View Article and Find Full Text PDF

Dietary methionine restriction (MR) extends life span across species via various intracellular regulatory mechanisms. In rodents, MR induces resistance against adiposity, improves hepatic glucose metabolism, preserves cardiac function, and reduces body size, all of which can affect the onset of age-related diseases. Recent studies have shown that MR-affected biomarkers, such as fibroblast growth factor 21, adiponectin, leptin, cystathionine β synthase, and insulin-like growth factor 1, can potentially alter physiology.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) link one-carbon metabolism to methylation status. However, it is unknown whether regulation of SAM and SAH by nutrient availability can be directly sensed to alter the kinetics of key histone methylation marks. We provide evidence that the status of methionine metabolism is sufficient to determine levels of histone methylation by modulating SAM and SAH.

View Article and Find Full Text PDF

Purpose: Glutathione (GSH), the most abundant endogenous antioxidant, is a critical regulator of oxidative stress and immune function. While oral GSH has been shown to be bioavailable in laboratory animal models, its efficacy in humans has not been established. Our objective was to determine the long-term effectiveness of oral GSH supplementation on body stores of GSH in healthy adults.

View Article and Find Full Text PDF

A metabolic health crisis is evident as cardiovascular diseases (CVD) remain the leading cause of mortality in the United States. Effects of resistant starch type 4 (RS4), a prebiotic fiber, in comprehensive management of metabolic syndrome (MetS) remain unknown. This study examined the effects of a blinded exchange of RS4-enriched flour (30% v/v) with regular/control flour (CF) diet on multiple MetS comorbidities.

View Article and Find Full Text PDF

Lifelong dietary methionine restriction (MR) is associated with increased longevity and decreased incidence of age-related disorders and diseases in rats and mice. A reduction in the levels of oxidative stress may be a contributing mechanistic factor for the beneficial effects of MR. To examine this, we determined the effects of an 80% dietary restriction of Met on different biomarkers of oxidative stress and antioxidant pathways in blood, liver, kidney and brain in the rat.

View Article and Find Full Text PDF

Glutathione (GSH), the major intracellular antioxidant, protects against cancer development by detoxifying carcinogens and free radicals and strengthening the immune system. Recently, a GAG-trinucleotide repeat polymorphism in the 5'-untranslated region of the gene for the rate-limiting enzyme for GSH biosynthesis, γ-glutamine cysteine ligase (GCL), was shown to be associated with lowered GCL activity and GSH levels in vitro and in vivo. We tested the hypothesis that this functional polymorphism in GCL is associated with the risk for lung and aerodigestive tract cancers.

View Article and Find Full Text PDF

A guanine-adenine-guanine (GAG) repeat polymorphism with 5 different alleles (4, 7, 8, 9, and 10 repeats) in the 5' untranslated region (UTR) of GCLC has been associated with altered GCL activity and glutathione (GSH) levels. We investigated whether this polymorphism affects either transcription or translation using luciferase reporter constructs containing variant GCLC 5' UTRs. Higher luciferase activity was observed in HepG2 and human embryonic kidney 293 (HEK293) cells transfected with constructs containing either 8 or 9 repeats than in constructs containing 4, 7, or 10 repeats (P<0.

View Article and Find Full Text PDF

Gamma-glutamylcysteine ligase (GCL) is the rate-limiting enzyme in glutathione (GSH) synthesis. A GAG-repeat polymorphism in the 5' UTR of the gene coding for the catalytic subunit of GCL (GCLC) has been associated with altered GSH levels in vitro. Thus, we hypothesized that this polymorphism is associated with altered GCL activity and blood GSH levels in vivo.

View Article and Find Full Text PDF

This paper is a comprehensive review of the effects of bioactive polyphenolic compounds commonly found in many fruits and vegetables on cancer. These include the pheniolic acids, anthocyanins, catechins, stilbenes and several other flavonoids. We have attempted to compile information from most of the major studies in this area into one source.

View Article and Find Full Text PDF

This study was designed to investigate possible additive or synergistic action among sphingomyelin (SPH), cis-9,trans-11-conjugated linoleic acid (CLA), and butyrate (BTY) against colon cancer and modulation of immune functions in vivo in male Sprague-Dawley rats. Each of the 5 groups of rats was fed either 35 mg SPH, 100 mg CLA, or 100 mg BTY/kg body weight, a combination of the 3 compounds at the same doses, or none of the compounds, for 7 wk. Rats were injected with azoxymethane, a colon carcinogen, to induce the formation of aberrant crypt foci, preneoplastic lesions of colon cancer.

View Article and Find Full Text PDF