Materials and composites with the ability to convert light into electricity are essential for a variety of applications, including solar cells. The development of materials and processes needed to boost the conversion efficiency of solar cell materials will play a key role in providing pathways for dependable light to electric energy conversion. Here, we show a simple, single-step technique to synthesize photoactive nanocomposites by coupling carbon nanotubes with semiconducting quantum dots using a molecular linker.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs)-based field-effect transistors (FETs) are being investigated vigorously for their promising applications in optoelectronics. Despite the high optical response reported in the literature, most of them are studied at room temperature. To extend the application of these materials in a photodetector, particularly at a low temperature, detailed understanding of the photo response behavior of these materials at low temperatures is crucial.
View Article and Find Full Text PDFBenzoic acid is the simplest aromatic carboxylic acid that is also a common water contaminant. Its structural and amphiphilic properties are shared by many other contaminants of concern. Based on a molecular dynamics study, this work reports the competitive adsorption of benzoic acid with water on the curved exteriors of carbon nanotubes of varying oxygen content.
View Article and Find Full Text PDFElectrically bridging severed nerves in vivo has transformative healthcare implications, but current materials are inadequate. Carbon nanotubes (CNTs) are promising, with low impedance, high charge injection capacity, high flexibility, are chemically inert, and can electrically couple to neurons. Ultralong CNTs are unexplored for neural applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
All solid-state flexible electrochemical double-layer capacitors (EDLCs) are crucial for providing energy options in a variety of applications, ranging from wearable electronics to bendable micro/nanotechnology. Here, we report on the development of robust EDLCs using aligned multiwalled carbon nanotubes (MWCNTs) grown directly on thin metal foils embedded in a poly(vinyl alcohol)/phosphoric acid (PVA/HPO) polymer gel. The thin metal substrate holding the aligned MWCNT assembly provides mechanical robustness and the PVA/HPO polymer gel, functioning both as the electrolyte as well as the separator, provides sufficient structural flexibility, without any loss of charge storage capacity under flexed conditions.
View Article and Find Full Text PDFDNA is strongly adsorbed on oxidized graphene surfaces in the presence of divalent cations. Here, we studied the effect of DNA adsorption on electrochemical charge transfer at few-layered, oxygen-functionalized graphene (GO) electrodes. DNA adsorption on the inkjet-printed GO electrodes caused amplified current response from ferro/ferricyanide redox probe at concentration range 1 aM-10 nM in differential pulse voltammetry.
View Article and Find Full Text PDFFlexible and ultrasensitive biosensing platforms capable of detecting a large number of trinucleotide repeats (TNRs) are crucial for future technology development needed to combat a variety of genetic disorders. For example, trinucleotide CGG repeat expansions in the gene can cause Fragile X syndrome (FXS) and Fragile X-associated tremor/ataxia syndrome (FXTAS). Current state-of-the-art technologies to detect repeat sequences are expensive, while relying on complicated procedures, and prone to false negatives.
View Article and Find Full Text PDFRemoval of harmful chemicals from water is paramount to environmental cleanliness and safety. As such, need for materials that will serve this purpose is in the forefront of environmental research that pertains to water purification. Here we show that bundles of single walled carbon nanotubes (SWNTs), synthesized by direct thermal decomposition of ferrocene (Fe(CH)), can remove emerging contaminants like benzoic acid from water with high efficiencies.
View Article and Find Full Text PDFThe existence of an exquisite phenomenon such as a metal-insulator transition (MIT) in two-dimensional (2D) systems, where completely different electronic functionalities in the same system can emerge simply by regulating parameters such as charge carrier density in them, is noteworthy. Such tunability in material properties can lead to several applications where precise tuning of function specific properties are desirable. Here, we report on our observation on the occurrence of MIT in the 2D material system of copper indium selenide (CuInSe).
View Article and Find Full Text PDFA large quantity of emerging contaminants are ionizable, and the ionized compounds display different adsorption behaviors than their neutral counterparts. In particular, a strong intermolecular force, negative charge assisted hydrogen bonding ((-)CAHB), was recently identified, which explains the unusually strong adsorption of negatively charged compounds on carbon nanotubes with oxygen-containing functional groups. However, most previous studies only probed molecules with one benzene ring.
View Article and Find Full Text PDFWe report on the low-temperature photoconductive properties of few layer p-type tungsten diselenide (WSe) field-effect transistors (FETs) synthesized using the chemical vapor transport method. Photoconductivity measurements show that these FETs display room temperature photo-responsivities of ∼7 mAW when illuminated with a laser of wavelength λ = 658 nm with a power of 38 nW. The photo-responsivities of these FETs showed orders of magnitude improvement (up to ∼1.
View Article and Find Full Text PDFAdsorption of gas molecules on the surface of atomically layered two-dimensional (2D) materials, including graphene and transition metal dichalcogenides, can significantly affect their electrical and optical properties. Therefore, a microscopic and quantitative understanding of the mechanism and dynamics of molecular adsorption and desorption has to be achieved in order to advance device applications based on these materials. However, recent theoretical calculations have yielded contradictory results, particularly on the magnitude of the adsorption energy.
View Article and Find Full Text PDFSemiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations.
View Article and Find Full Text PDFWe report on the photo-conductivity studies of chemically synthesized graphene quantum dots (GQDs) of average size 12 nm obtained by the oxidative acid treatment of MWCNTs. The dependence of photocurrent Iph (Iph = Iill - Idark) on the laser intensity P under a wide range of laser intensities (5 mW ≤ P ≤ 60 mW) shows a fractional power dependence of Iph on light intensity. The temperature dependence (300 K < T < 50 K) of Iph observed in thin films of these GQDs indicates that in the higher temperature region (T > ∼100 K), as the temperature increases, the number of thermally generated carriers increase resulting in increased Iph.
View Article and Find Full Text PDFThe ability to synthesize high-quality samples over large areas and at low cost is one of the biggest challenges during the developmental stage of any novel material. While chemical vapor deposition (CVD) methods provide a promising low-cost route for CMOS compatible, large-scale growth of materials, it often falls short of the high-quality demands in nanoelectronics and optoelectronics. We present large-scale CVD synthesis of single- and few-layered MoS2 using direct vapor-phase sulfurization of MoO2, which enables us to obtain extremely high-quality single-crystal monolayer MoS2 samples with field-effect mobility exceeding 30 cm(2)/(V s) in monolayers.
View Article and Find Full Text PDF2-Dimensional structures with swift optical response have several technological advantages, for example they could be used as components of ultrafast light modulators, photo-detectors, and optical switches. Here we report on the fast photo switching behavior of thin films of liquid phase exfoliated MoS2, when excited with a continuous laser of λ = 658 nm (E = 1.88 eV), over a broad range of laser power.
View Article and Find Full Text PDFWe report on the electrochemical charge storage behavior of few-layered flakes of molybdenum disulfide (MoS2) obtained by liquid phase exfoliation of bulk MoS2 powder in 1-dodecyl-2-pyrrolidinone. The specific capacitances of the exfoliated flakes obtained using a 6 M KOH aqueous solution as an electrolyte were found to be an order of magnitude higher than those of bulk MoS2 (∼0.5 and ∼2 mF cm(-2) for bulk and exfoliated MoS2 electrodes, respectively).
View Article and Find Full Text PDFWe report on the low-temperature electrical transport properties of large area boron and nitrogen codoped graphene layers (BNC). The temperature dependence of resistivity (5 K < T < 400 K) of BNC layers show semiconducting nature and display a band gap which increases with B and N content, in sharp contrast to large area graphene layers, which shows metallic behavior. Our investigations show that the amount of B dominates the semiconducting nature of the BNC layers.
View Article and Find Full Text PDFBackground: A label-free immunosensor from as-grown double wall carbon nanotubes (DW) bundles was developed for detecting Salmonella typhimurium. The immunosensor was fabricated by using the as-grown DW bundles as an electrode material with an anti-Salmonella impregnated on the surface. The immunosensor was electrochemically characterized by cyclic voltammetry.
View Article and Find Full Text PDFIn this study, we investigate photophysical and photoinduced current responses of a nanocomposite which consists of multiwalled carbon nanotubes (CNTs), thiol derivative perylene compound (ETPTCDI), and cadmium selenide quantum dots (QDs). These QDs as well as the ETPTCDI harvest photons and transfer their excited electrons or holes to CNTs to complete the circuit. Both QDs and ETPTCDI contribute charges to the carbon nanotubes, which increased the overall photon harvest efficiency of the nanocomposite.
View Article and Find Full Text PDFWe present a scalable and facile technique for noncovalent functionalization of graphene with 1-pyrenecarboxylic acid that exfoliates single-, few-, and multilayered graphene flakes into stable aqueous dispersions. The exfoliation mechanism is established using stringent control experiments and detailed characterization steps. Using the exfoliated graphene, we demonstrate highly sensitive and selective conductometric sensors (whose resistance rapidly changes >10,000% in saturated ethanol vapor), and ultracapacitors with extremely high specific capacitance (∼ 120 F/g), power density (∼ 105 kW/kg), and energy density (∼ 9.
View Article and Find Full Text PDFSolid lubricants (SLs) characterized by low coefficients of friction (mu) and wear rates (w) drastically improve the life span of instruments that undergo extreme frictional wear. However, the performance of SLs such as sputtered or nanoparticulate molybdenum disulfide (MoS(2)), tungsten disulfide (WS(2)), or graphite deteriorates heavily under extreme operational conditions such as elevated temperatures and high humidity. Here, we present our preliminary results, which demonstrate that composites of carbon nanotubes (CNTs) and MoS(2) produced by electrodeposition of MoS(2) on vertically aligned CNT films have low mu ( approximately 0.
View Article and Find Full Text PDFWe report on the fabrication of electrochemical double layer capacitor (EDLC) electrodes with aligned carbon nanotubes (CNTs) grown directly on conductive substrates using an air assisted chemical vapor deposition technique. The fabricated EDLCs showed very small equivalent series resistances (approximately few hundreds of mOmega), a direct consequence of integrating CNTs with metal current collectors. The specific capacitance of the CNTs used for EDLC electrodes increased with decreasing CNT lengths and ranged from 10.
View Article and Find Full Text PDFCarbon nanotubes are a new class of nanomaterials that have immense potential in the field of biomedicine. Their ability to carry large quantities of therapeutic molecules makes them prime candidates for providing targeted delivery of therapeutics for use in various diseases. However, their utility is limited due to the problems faced during their delivery to target sites.
View Article and Find Full Text PDFThe ultimate conductometric sensor for ferromagnetic activity of nanoscale magnetic materials could be a single carbon nanotube. We show that the electrical conductance of an individual carbon nanotube is sensitive to magnetic transitions of nanoscale magnets embedded inside it. To establish this, multiwall carbon nanotubes were impregnated with cobalt nanoclusters.
View Article and Find Full Text PDF