Publications by authors named "Saik Kia Goh"

Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source.

View Article and Find Full Text PDF

Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which is an important physiological regulator of stem cell function and fate.

View Article and Find Full Text PDF

Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells.

View Article and Find Full Text PDF

One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering.

View Article and Find Full Text PDF

It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored.

View Article and Find Full Text PDF

Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal.

View Article and Find Full Text PDF

Background: Human cardiac stem cells (CSCs) promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of CSCs in very young patients with nonischemic congenital heart defects has not been explored. We hypothesized that isolated neonatal-derived CSCs may have a higher regenerative ability than adult-derived CSCs and might address the structural deficiencies of congenital heart disease.

View Article and Find Full Text PDF

Type 1 diabetes affects more than a million people in the United States and many more across the world. While pharmaceutical interventions and insulin supplementation are the most commonplace treatment of diabetes, these are not essentially cures and can potentially lead to long-term complications. Transplantation of insulin-producing Islets of Langerhans from donor pancreas has been established as a promising alternative to diabetes therapy.

View Article and Find Full Text PDF

Objective: A bioresorbable polymeric film reduces the extent and severity of postoperative adhesions in infants undergoing repeat sternotomy. Resorption of the bioresorbable polymeric film, however, leaves no barrier between the sternum and the epicardium. A sheet of expanded polytetrafluoroethylene is used by many surgeons to create a physical barrier between the sternum and the cardiac structures.

View Article and Find Full Text PDF

Background: Human cardiac progenitor cells (hCPCs) may promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of hCPCs in young patients with nonischemic congenital heart defects for potential use in congenital heart defect repair warrants exploration.

Methods And Results: Human right atrial specimens were obtained during routine congenital cardiac surgery across 3 groups: neonates (age, <30 days), infants (age, 1 month to 2 years), and children (age, >2 to ≤13 years).

View Article and Find Full Text PDF

Background: The investigation of molecular mechanisms underlying transcriptional regulation, particularly in embryonic stem cells, has received increasing attention and involves the systematic identification of target genes and the analysis of promoter co-occupancy. High-throughput approaches based on chromatin immunoprecipitation (ChIP) have been widely used for this purpose. However, these approaches remain time-consuming, expensive, labor-intensive, involve multiple steps, and require complex statistical analysis.

View Article and Find Full Text PDF

About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function.

View Article and Find Full Text PDF

Adequate cell-based repair of adult myocardium remains an elusive goal because most cells that are used cannot generate mature myocardium sufficient to promote large functional improvements. Embryonic stem cells can generate both mature cardiocytes and vasculature, but their use is hampered by associated teratoma formation and the need for an allogeneic source. The detection of sca-1(+), c-kit(+), or isl-1(+) cardiac precursors and the creation of cardiospheres from adult heart tissues suggest that a persistent population of immature progenitor cells is present in the mature myocardium.

View Article and Find Full Text PDF