The paramount importance of lithium (Li) nowadays and the mounting volume of untreated spent LIB have imposed pressure on innovators to tackle the near-term issue of Li resource depletion through recycling. The trajectory of research dedicated to recycling has skyrocketed in this decade, reflecting the global commitment to addressing the issues surrounding Li resources. Although metallurgical methods, such as pyro- and hydrometallurgy, are presently prevalent in Li recycling, they exhibit unsustainable operational characteristics including elevated temperatures, the utilization of substantial quantities of expensive chemicals, and the generation of emissions containing toxic gases such as Cl, SO, and NO.
View Article and Find Full Text PDFThe increasing levels of carbon dioxide (CO) in the atmosphere may dissolve into the ocean and affect the marine ecosystem. It is crucial to determine the level of dissolved CO in the ocean to enable suitable mitigation actions to be carried out. The conventional electrode materials are expensive and susceptible to chloride ion attack.
View Article and Find Full Text PDFIn this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP's surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% and 8% filler loadings were fabricated using solution casting technique. The characterizations of SEM, FTIR and TGA of synthesized membranes were performed.
View Article and Find Full Text PDFRecently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches.
View Article and Find Full Text PDFScaffolds support and promote the formation of new functional tissues through cellular interactions with living cells. Various types of scaffolds have found their way into biomedical science, particularly in tissue engineering. Scaffolds with a superior tissue regenerative capacity must be biocompatible and biodegradable, and must possess excellent functionality and bioactivity.
View Article and Find Full Text PDFThis study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.
View Article and Find Full Text PDFThe development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes.
View Article and Find Full Text PDF