We designed a web-based program, WHAT, which uses a sliding window to determine and plot the hydropathy, amphipathicity, secondary structure and transmembrane topology along the length of any protein sequence. This method is based on programs designed by us for hydropathy and amphipathicity but on JNET and MEMSAT for secondary structure and transmembrane topology predictions, respectively. It has a user-friendly interface and a convenient input format.
View Article and Find Full Text PDFPrevious work defined several families of secondary active transporters, including the prokaryotic small multidrug resistance (SMR) and rhamnose transporter (RhaT) families as well as the eukaryotic organellar triose phosphate transporter (TPT) and nucleotide-sugar transporter (NST) families. We show that these families as well as several other previously unrecognized families of established or putative secondary active transporters comprise a large ubiquitous superfamily found in bacteria, archaea and eukaryotes. We have designated it the drug/metabolite transporter (DMT) superfamily (transporter classification number 2.
View Article and Find Full Text PDFWe currently recognize five large ubiquitous superfamilies and one small eukaryotic-specific family in which cellular multidrug efflux pumps occur. One, the ABC superfamily, includes members that use ATP hydrolysis to drive drug efflux, but the MFS, RND, MATE and DMT superfamilies include members that are secondary carriers, functioning by drug:H(+)or drug:Na(+)antiport mechanisms. The small MET family seems to be restricted to endosomal membranes of eukaryotes, and only a single such system has been functionally characterized.
View Article and Find Full Text PDFMultidrug resistance (MDR) efflux pumps in pathogenic microorganisms nullify the effects of antimicrobial drugs used in medicine. We have conducted phylogenetic analyses showing that these efflux pumps are associated with five superfamilies of transport systems. One of these, the drug/metabolite transporter (DMT) superfamily includes a family of small multidrug resistance (SMR)-conferring proteins that are discussed in detail in this review.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
July 2001
Some bacteria of the soil microflora or of the digestive systems of mammals can grow on aryl beta-glucosides as sole carbon sources. The bgl operon of E. coli is the paradigm for such a catabolic pathway.
View Article and Find Full Text PDFWe here tabulate and describe all currently recognized proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and their homologues encoded within the genomes of sequenced E. coli strains. There are five recognized Enzyme I homologues and six recognized HPr homologues.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
July 2001
The determination by NMR of the solution structure of the phosphorylated enzyme IIB (P-IIB(Chb)) of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli is presented. Most of the backbone and side-chain resonances were assigned using a variety of mostly heteronuclear NMR experiments. The remaining resonances were assigned with the help of the structure calculations.
View Article and Find Full Text PDFThe heterofermentative lactic acid bacterium Lactobacillus brevis transports galactose and the nonmetabolizable galactose analogue thiomethyl-beta-galactoside (TMG) by a permease-catalyzed sugar:H(+) symport mechanism. Addition of glucose to L. brevis cells loaded with [(14)C]TMG promotes efflux and prevents accumulation of the galactoside, probably by converting the proton symporter into a uniporter.
View Article and Find Full Text PDFWe designed a web-based program, AveHAS, to determine and plot the average hydropathy, average amphipathicity and average similarity for a clustal X-derived multiple alignment of homologous protein sequences. This method is based on the TREEMOMENT and Hydro programs. It has a user-friendly interface, a convenient input format and an improved algorithm.
View Article and Find Full Text PDFThe complete genome sequences of 36 microorganisms have now been published and this wealth of genome data has enabled the development of comparative genomic and functional genomic approaches to investigate the biology of these organisms. Comparative genomic analyses of membrane transport systems have revealed that transporter substrate specificities correlate with an organism's lifestyle. The types and numbers of predicted drug efflux systems vary dramatically amongst sequenced organisms.
View Article and Find Full Text PDFThe microbial rhodopsins (MR) are homologous to putative chaperone and retinal-binding proteins of fungi. These proteins comprise a coherent family that we have termed the MR family. We have used modeling techniques to predict the structure of one of the putative yeast chaperone proteins, YRO2, based on homology with bacteriorhodopsins (BR).
View Article and Find Full Text PDFPrevious studies have shown that the CcpA protein of Bacillus subtilis is a major transcription factor mediating catabolite repression. We report here whole-transcriptome analyses that characterize CcpA-dependent, glucose-dependent gene expression and correlate the results with full-genome computer analyses of DNA binding (CRE) sites for CcpA. The data obtained using traditional approaches show good agreement with those obtained using the transcriptome approach.
View Article and Find Full Text PDFIntegral membrane proteins from over 20 ubiquitous families of channels, secondary carriers, and primary active transporters were analyzed for average size differences between homologues from the three domains of life: Bacteria, Archaea, and Eucarya. The results showed that while eucaryotic homologues are consistently larger than their bacterial counterparts, archaeal homologues are significantly smaller. These size differences proved to be due primarily to variations in the sizes of hydrophilic domains localized to the N termini, the C termini, or specific loops between transmembrane alpha-helical spanners, depending on the family.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
October 2000
The ability to control multiple genes at the transcriptional level often relies on the existence of short stretches of well-defined DNA sequences, to which regulatory proteins and transcription factors bind. In this article we present a freely accessible web-based application (GRASP-DNA), that can be used to screen prokaryotic genomes for putative DNA-binding sites of a particular transcription factor or DNA-binding molecule. This application utilizes existing theories, such as information and statistical-mechanical theories, for the calculation of positive weight matrices generated from block aligned binding sites.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
October 2000
The completely sequenced genomes of two spirochetes, Borrelia burgdorferi(Bbu) and Treponema pallidum (Tpa) were analyzed for the distribution of transporter types. Both organisms exhibited fewer proteins with >7 alpha-helical transmembrane spanners (TMSs), and fewer identified transport systems per megabase pair of DNA than most other prokaryotes analyzed. Each organism exhibits one recognizable ion channel protein of the MscS family.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2000
Amoebapores, synthesized by human protozoan parasites, form ion channels in target cells and artificial lipid membranes. The major pathogenic effect of these proteins is due to their cytolytic capability which results in target cell death. They comprise a coherent family and are homologous to other proteins and protein domains found in eight families.
View Article and Find Full Text PDFPseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P.
View Article and Find Full Text PDFIn Corynebacterium glutamicum the LysE carrier protein exhibits the unique function of exporting L-lysine. We here analyze the membrane topology of LysE, a protein of 236 amino acyl residues, using PhoA- and LacZ-fusions. The amino-terminal end of LysE is located in the cytoplasm whereas the carboxy-terminal end is found in the periplasm.
View Article and Find Full Text PDFWe herein describe all genes encoding constituents of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in the 6Mbp genome of the opportunistic human pathogen, Pseudomonas aeruginosa. Only four gene clusters were found to encode identifiable PTS homologues. These genes clusters encode novel multidomain proteins, two complete sugar-specific PTS phosphoryl transfer chains for the metabolism of fructose and N-acetylglucosamine, and a complex regulatory system that may function to coordinate carbon and nitrogen metabolism.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
November 1999
Voltage-sensitive cation-selective ion channels of the voltage-gated ion channel (VGC) superfamily were examined by a combination of sequence alignment and phylogenetic tree construction procedures. Segments of the alpha-subunits of K+-selective channels homologous to the structurally elucidated KcsA channel of Streptomyces lividans were multiply aligned, and this alignment provided the database for computer-assisted structural analyses and phylogenetic tree construction. Similar analyses were conducted with the four homologous repeats of the alpha-subunits from representative Ca2+- and Na+-selective channels, as well as with the ensemble of K+, Ca2+ and Na+ channels.
View Article and Find Full Text PDF