Both O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and endoplasmic reticulum-phagy (ER-phagy) are well-characterized conserved adaptive regulatory mechanisms that maintain cellular homeostasis and function in response to various stress conditions. Abnormalities in O-GlcNAcylation and ER-phagy have been documented in a wide variety of human pathologies. However, whether O-GlcNAcylation or ER-phagy is involved in the pathogenesis of intervertebral disc degeneration (IDD) is largely unknown.
View Article and Find Full Text PDFSymptomatic adjacent segment disease (ASD) is a common challenge after anterior cervical discectomy and fusion (ACDF). The objective of this study was to compare the biomechanical effects of a second ACDF and laminoplasty for the treatment of ASD after primary ACDF. We developed a finite element (FE) model of the C2-T1 based on computed tomography images.
View Article and Find Full Text PDFPrevious studies have established the pathogenic role of advanced glycation end products (AGEs) accumulation in intervertebral disc degeneration (IDD). Emerging evidence indicates that ER-phagy serves as a crucial cellular adaptive mechanism during stress conditions. This study is aimed at investigating the role of FAM134B-mediated ER-phagy in human nucleus pulposus (NP) cells upon AGEs treatment and exploring its regulatory mechanisms.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are extracellular nanovesicles that deliver diverse cargoes to the cell and participate in cell communication. Mesenchymal stem cell (MSCs)-derived EVs are considered a therapeutic approach in musculoskeletal degenerative diseases, including intervertebral disc degeneration. However, limited production yield and unstable quality have impeded the clinical application of EVs.
View Article and Find Full Text PDFMechanical stimulation plays a crucial part in the development of intervertebral disc degeneration (IDD). Extracellular matrix (ECM) stiffness, which is a crucial mechanical microenvironment of the nucleus pulposus (NP) tissue, contributes to the pathogenesis of IDD. The mechanosensitive ion channel Piezo1 mediates mechanical transduction.
View Article and Find Full Text PDFFerroptosis is a specialized form of regulated cell death that is charactered by iron-dependent lethal lipid peroxidation, a process associated with multiple diseases. However, its role in the pathogenesis of intervertebral disc degeneration (IVDD) is rarely investigated. This study is aimed at investigating the role of ferroptosis in oxidative stress- (OS-) induced nucleus pulposus cell (NPC) decline and the pathogenesis of IVDD and determine the underlying regulatory mechanisms.
View Article and Find Full Text PDFEndoscopic cervical foraminotomy is increasingly used for cervical spondylotic radiculopathy (CSR), but there is great concern about radiation exposure because of the heavy dependence of this surgical method on fluoroscopy. The objective of this study was to introduce in detail an advanced surgical technique of keyhole foraminotomy via a percutaneous posterior full-endoscopic approach as a treatment for CSR and investigate its clinical outcomes. We retrospectively reviewed 33 consecutive patients with CSR who underwent keyhole foraminotomy via a percutaneous posterior full-endoscopic approach from October 2015 to April 2017.
View Article and Find Full Text PDFObjectives: Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress-induced senescence of nucleus pulposus (NP) cells.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) is one of the most common chronic degenerative musculoskeletal disorders. Oxidative stress-induced apoptosis of the nucleus pulposus (NP) cells plays a key role during IDD progression. Advanced oxidation protein products (AOPP), novel biomarkers of oxidative stress, have been reported to function in various diseases due to their potential for disrupting the redox balance.
View Article and Find Full Text PDFCircular RNAs (circRNAs) have been increasingly demonstrated to play critical roles in the pathogenesis of various human diseases. Intervertebral disk degeneration (IDD) is recognized as the major contributor to lower back pain, and mechanical stress is a predominant trigger for IDD. However, little is known about the part that circRNAs play in the involvement of mechanical stress during IDD development.
View Article and Find Full Text PDFSpinal cord infarction (SCI) occurs rarely and is characterized by abrupt onset of neck or back pain and neurologic deterioration. Fibrocartilaginous embolism (FCE) of the spinal cord is a rare but possible cause of acutely progressive spinal cord symptoms. Here, we report the case of an older woman who developed acute paraplegia with SCI on the 10th day after thoracic spine surgery.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2020
The purpose of this study was to use models of spine to compare range of motion and intradiscal pressure of adjacent segments performing anterior and/or posterior lumbar surgical approaches and predict potential risk of adjacent segment degeneration. A previously validated finite element model of the intact L1-S1 segments was used. Three different anterior and one posterior surgical fixation approaches for tuberculosis were performed in L3-L5.
View Article and Find Full Text PDFObjective: To evaluate the efficacy and feasibility of minimally invasive oblique lumbar interbody debridement and fusion for the treatment of conservatively ineffective lumbar spondylodiscitis.
Methods: This is a retrospective study. Between December 2016 and November 2017, a total of 14 consecutive patients (eight males and six females, with an average age of 49.
Comput Methods Biomech Biomed Engin
September 2020
Percutaneous posterior full-endoscopic cervical foraminotomy and discectomy (PECFD) is recognized as a safe, effective, and minimally invasive treatment for cervical spondylotic radiculopathy (CSR). However, the potential mechanisms of the degenerative changes and postoperative recurrence after PECFD are unclear. In this study, a finite element (FE) analysis and radiological assessment were performed to evaluate the biomechanical effects after PECFD.
View Article and Find Full Text PDFN6 methyladenosine (mA) is one of the most prevalent epitranscriptomic modifications of mRNAs, and plays a critical role in various bioprocesses. Bone-derived mesenchymal stem cells (BMSCs) can attenuate apoptosis of nucleus pulposus cells (NPCs) under compression; however, the underlying mechanisms are poorly understood. This study showed that the level of mA mRNA modifications was decreased, and the autophagic flux was increased in NPCs under compression when they were cocultured with BMSCs.
View Article and Find Full Text PDFBackground: Spinopelvic sagittal parameters have a significant influence on adjacent segment degeneration (ASD) after fusion surgery. The association between ASD and sagittal balance is not well understood. The purpose of this study was to investigate the biomechanical influence of various sacral slope (SS) degrees on adjacent segments after transforaminal lumbar interbody fusion (TLIF) at the L4-L5 level.
View Article and Find Full Text PDFPrevious studies identified advanced glycation end products (AGEs) accumulation in the intervertebral disc (IVD) as an essential risk factor associated with IVD degeneration via accelerated cell apoptosis and impeded extracellular-matrix metabolism; however, the underlying mechanisms have not been fully elucidated. Here, we investigated the effects and mechanisms of AGEs-mediated apoptosis in vitro and in vivo. We evaluated the effects of AGEs on endoplasmic reticulum (ER) stress, apoptosis, and subcellular calcium (Ca ) redistribution.
View Article and Find Full Text PDFAim: Nucleus pulposus (NP) cell apoptosis induced by oxidative stress is known to be closely involved in the pathogenesis of intervertebral disc (IVD) degeneration. Berberine, a small molecule derived from Rhizoma coptidis, has been found to exert antioxidative activity and preserve cell viability. The present study aims to investigate whether berberine can prevent NP cell apoptosis under oxidative damage and the potential underlying mechanisms.
View Article and Find Full Text PDFObjective: To analyze the biomechanical changes of lumbar adjacent segment by comparing the biomechanics after the surgery of transforaminal lumbar interbody fusion (TLIF) and oblique lumbar interbody fusion (OLIF).
Methods: The finite element model of the L1-S1 was reconstructed via computed tomography scan images. The models of TLIF and OLIF were constructed and analyzed.